Michael Gekle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3152812/publications.pdf

Version: 2024-02-01

84 papers

3,295 citations

34 h-index 55 g-index

85 all docs 85 docs citations

85 times ranked 3516 citing authors

#	Article	IF	CITATIONS
1	Modulation of transcriptional mineralocorticoid receptor activity by casein kinase 1. FASEB Journal, 2022, 36, e22059.	0.5	O
2	Epithelial–Fibroblast Crosstalk Protects against Acidosis-Induced Inflammatory and Fibrotic Alterations. Biomedicines, 2022, 10, 681.	3.2	7
3	Synergy of epidermal growth factor (EGFR) and angiotensin II (AT1R) receptor determines composition and temporal pattern of transcriptome variation. Cellular and Molecular Life Sciences, 2022, 79, 1.	5.4	5
4	The F2-isoprostane 8-iso-PGF2α attenuates atherosclerotic lesion formation in Ldlr-deficient mice – Potential role of vascular thromboxane A2 receptors. Free Radical Biology and Medicine, 2022, 185, 36-45.	2.9	5
5	The Functional Interaction of EGFR with AT1R or TP in Primary Vascular Smooth Muscle Cells Triggers a Synergistic Regulation of Gene Expression. Cells, 2022, 11, 1936.	4.1	4
6	The Impact of the Nephrotoxin Ochratoxin A on Human Renal Cells Studied by a Novel Co-Culture Model Is Influenced by the Presence of Fibroblasts. Toxins, 2021, 13, 219.	3.4	5
7	Endothelial epidermal growth factor receptor is of minor importance for vascular and renal function and obesity-induced dysfunction in mice. Scientific Reports, 2021, 11, 7269.	3.3	12
8	The mineralocorticoid receptor leads to increased expression of EGFR and T-type calcium channels that support HL-1 cell hypertrophy. Scientific Reports, 2021, 11, 13229.	3.3	4
9	miR-208b Reduces the Expression of Kcnj5 in a Cardiomyocyte Cell Line. Biomedicines, 2021, 9, 719.	3.2	3
10	Calcineurin (PPP3CB) regulates angiotensin IIâ€dependent vascular remodelling by potentiating EGFR signalling in mice. Acta Physiologica, 2021, 233, e13715.	3.8	9
11	The risk of indoor sports and culture events for the transmission of COVID-19. Nature Communications, 2021, 12, 5096.	12.8	85
12	Influence of miR-221/222 on cardiomyocyte calcium handling and function. Cell and Bioscience, 2021, 11, 160.	4.8	4
13	Glomerular Mesangial Cell pH Homeostasis Mediates Mineralocorticoid Receptor-Induced Cell Proliferation. Biomedicines, 2021, 9, 1117.	3.2	2
14	Angiotensin II receptor type 1 – An update on structure, expression and pathology. Biochemical Pharmacology, 2021, 192, 114673.	4.4	23
15	Identification and initial characterization of POLIII-driven transcripts by msRNA-sequencing. RNA Biology, 2021, 18, 1-11.	3.1	1
16	miR-221 and -222 target CACNA1C and KCNJ5 leading to altered cardiac ion channel expression and current density. Cellular and Molecular Life Sciences, 2020, 77, 903-918.	5.4	20
17	Knockout of vascular smooth muscle EGF receptor in a mouse model prevents obesity-induced vascular dysfunction and renal damage in vivo. Diabetologia, 2020, 63, 2218-2234.	6.3	11
18	Weighted Correlation Network Analysis Reveals CDK2 as a Regulator of a Ubiquitous Environmental Toxin-Induced Cell-Cycle Arrest. Cells, 2020, 9, 143.	4.1	7

#	Article	IF	CITATIONS
19	A hydraulic model of cardiovascular physiology and pathophysiology embedded into a computer-based teaching system for student training in laboratory courses. American Journal of Physiology - Advances in Physiology Education, 2020, 44, 423-429.	1.6	6
20	Epithelial-fibroblast cross talk aggravates the impact of the nephrotoxin ochratoxin A. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 118528.	4.1	9
21	The selective mineralocorticoid receptor antagonist eplerenone prevents decompensation of the liver in cirrhosis. British Journal of Pharmacology, 2018, 175, 2956-2967.	5.4	13
22	Identification of a novel IncRNA induced by the nephrotoxin ochratoxin A and expressed in human renal tumor tissue. Cellular and Molecular Life Sciences, 2018, 75, 2241-2256.	5.4	24
23	Kidney and aging — A narrative review. Experimental Gerontology, 2017, 87, 153-155.	2.8	60
24	Calcineurin inhibitors regulate fibroblast growth factor 23 (FGF23) synthesis. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 1117-1123.	3.0	10
25	Modulation of transcriptional mineralocorticoid receptor activity by casein kinase 2. Scientific Reports, 2017, 7, 15340.	3.3	14
26	Structure–activity relationship of ochratoxin A and synthesized derivatives: importance of amino acid and halogen moiety for cytotoxicity. Archives of Toxicology, 2017, 91, 1461-1471.	4.2	12
27	Consequences of postnatal vascular smooth muscle EGFR deletion on acute angiotensin II action. Clinical Science, 2016, 130, 19-33.	4.3	17
28	Substance-specific importance of EGFR for vascular smooth muscle cells motility in primary culture. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1519-1533.	4.1	16
29	Activated mineralocorticoid receptor regulates microâ€RNAâ€29b in vascular smooth muscle cells. FASEB Journal, 2016, 30, 1610-1622.	0.5	25
30	Direct inhibition, but indirect sensitization of pacemaker activity to sympathetic tone by the interaction of endotoxin with ⟨scp⟩HCN⟨/scp⟩â€channels. Clinical and Experimental Pharmacology and Physiology, 2015, 42, 874-880.	1.9	8
31	Acidosis-Induced Changes in Proteome Patterns of the Prostate Cancer-Derived Tumor Cell Line AT-1. Journal of Proteome Research, 2015, 14, 3996-4004.	3.7	14
32	Role of epidermal growth factor receptor in vascular structure and function. Current Opinion in Nephrology and Hypertension, 2014, 23, 113-121.	2.0	54
33	Role of microRNA-29b in the ochratoxin A-induced enhanced collagen formation in human kidney cells. Toxicology, 2014, 324, 116-122.	4.2	34
34	Moderate inappropriately high aldosterone/NaCl constellation in mice: cardiovascular effects and the role of cardiovascular epidermal growth factor receptor. Scientific Reports, 2014, 4, 7430.	3.3	13
35	Impact of Hypoxia-Related Tumor Acidosis on Cytotoxicity of Different Chemotherapeutic Drugs In Vitro and In Vivo. Advances in Experimental Medicine and Biology, 2014, 812, 51-58.	1.6	13
36	Impact of Extracellular Acidosis on Intracellular pH Control and Cell Signaling in Tumor Cells. Advances in Experimental Medicine and Biology, 2013, 789, 221-228.	1.6	21

#	Article	IF	Citations
37	Loss of Epidermal Growth Factor Receptor in Vascular Smooth Muscle Cells and Cardiomyocytes Causes Arterial Hypotension and Cardiac Hypertrophy. Hypertension, 2013, 61, 333-340.	2.7	56
38	The phosphatase calcineurin PP2BA \hat{l}^2 mediates part of mineralocorticoid receptor transcriptional activity. FASEB Journal, 2012, 26, 2327-2337.	0.5	10
39	Influence of Aldosterone and Salt or Ouabain in A10 Rat Aorta Smooth Muscle Cells. Journal of Vascular Research, 2012, 49, 231-241.	1.4	3
40	Modulation of transcriptional mineralocorticoid receptor activity by nitrosative stress. Free Radical Biology and Medicine, 2012, 53, 1088-1100.	2.9	14
41	Nuclear Shuttling Precedes Dimerization in Mineralocorticoid Receptor Signaling. Chemistry and Biology, 2012, 19, 742-751.	6.0	69
42	The food contaminant and nephrotoxin ochratoxin <scp>A</scp> enhances <scp>W</scp> nt1 inducible signaling protein 1 and tumor necrosis factorâ€Î± expression in human primary proximal tubule cells. Molecular Nutrition and Food Research, 2012, 56, 1375-1384.	3.3	31
43	Interaction between mineralocorticoid receptor and epidermal growth factor receptor signaling. Molecular and Cellular Endocrinology, 2012, 350, 235-241.	3.2	18
44	Acidic Environment Leads to ROS-Induced MAPK Signaling in Cancer Cells. PLoS ONE, 2011, 6, e22445.	2.5	119
45	Consequences of Epidermal Growth Factor Receptor (ErbB1) Loss for Vascular Smooth Muscle Cells From Mice With Targeted Deletion of ErbB1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1643-1652.	2.4	36
46	Aldosterone/NaCl-induced renal and cardiac fibrosis is modulated by TGF- \hat{l}^2 responsiveness of T cells. Hypertension Research, 2011, 34, 623-629.	2.7	28
47	Colocalization of mineralocorticoid and EGF receptor at the plasma membrane. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 584-590.	4.1	41
48	Mineralocorticoid receptor inhibits CREB signaling by calcineurin activation. FASEB Journal, 2010, 24, 2010-2019.	0.5	28
49	Interaction between mineralocorticoid receptor and cAMP/CREB signaling. Steroids, 2010, 75, 539-543.	1.8	13
50	Actions of aldosterone in the cardiovascular system: the good, the bad, and the ugly?. Pflugers Archiv European Journal of Physiology, 2009, 458, 231-246.	2.8	66
51	Acidosis induces multiâ€drug resistance in rat prostate cancer cells (AT1) <i>in vitro</i> and <i>in vivo</i> by increasing the activity of the pâ€glycoprotein <i>via</i> activation of p38. International Journal of Cancer, 2008, 123, 2532-2542.	5.1	95
52	EF Domains Are Sufficient for Nongenomic Mineralocorticoid Receptor Actions. Journal of Biological Chemistry, 2008, 283, 7109-7116.	3.4	39
53	Aldosterone-induced EGFR expression: interaction between the human mineralocorticoid receptor and the human EGFR promoter. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1790-E1800.	3.5	74
54	Ca2+ but not H2O2 modulates GRE-element activation by the human mineralocorticoid receptor in HEK cells. Molecular and Cellular Endocrinology, 2007, 264, 35-43.	3.2	23

#	Article	IF	CITATIONS
55	Non-classical actions of the mineralocorticoid receptor: Misuse of EGF receptors?. Molecular and Cellular Endocrinology, 2007, 277, 6-12.	3.2	36
56	Long-term effects of ochratoxin A on fibrosis and cell death in human proximal tubule or fibroblast cells in primary culture. Toxicology, 2007, 232, 57-67.	4.2	37
57	Altered collagen homeostasis in human aortic smooth muscle cells (HAoSMCs) induced by aldosterone. Pflugers Archiv European Journal of Physiology, 2007, 454, 403-413.	2.8	27
58	Role of the tumor microenvironment in the activity and expression of the p-glycoprotein in human colon carcinoma cells. Oncology Reports, 2007, 17, 239-44.	2.6	43
59	Impact of Extracellular Acidity on the Activity of P-glycoprotein and the Cytotoxicity of Chemotherapeutic Drugs. Neoplasia, 2006, 8, 143-152.	5.3	126
60	Chloroacetaldehyde- and acrolein-induced death of human proximal tubule cells. Pediatric Nephrology, 2006, 21, 60-67.	1.7	41
61	Prostaglandin E2 Inhibits Its Own Renal Transport by Downregulation of Organic Anion Transporters rOAT1 and rOAT3. Journal of the American Society of Nephrology: JASN, 2006, 17, 46-53.	6.1	46
62	Ochratoxin A at nanomolar concentrations: A signal modulator in renal cells. Molecular Nutrition and Food Research, 2005, 49, 118-130.	3.3	86
63	Human Mineralocorticoid Receptor Expression Renders Cells Responsive for Nongenotropic Aldosterone Actions. Molecular Endocrinology, 2005, 19, 1697-1710.	3.7	153
64	RENAL TUBULE ALBUMIN TRANSPORT. Annual Review of Physiology, 2005, 67, 573-594.	13.1	225
65	The Nephrotoxin Ochratoxin A Induces Key Parameters of Chronic Interstitial Nephropathy in Renal Proximal Tubular Cells. Cellular Physiology and Biochemistry, 2005, 15, 125-134.	1.6	49
66	Evidence for epidermal growth factor receptor as negative-feedback control in aldosterone-induced Na+ reabsorption. American Journal of Physiology - Renal Physiology, 2004, 286, F1226-F1231.	2.7	52
67	Mechanism of cell death of rat cardiac fibroblasts induced by serum depletion. Molecular and Cellular Biochemistry, 2003, 251, 119-126.	3.1	13
68	Protein uptake disturbs collagen homeostasis in proximal tubule-derived cells. Kidney International, 2003, 63, S103-S109.	5.2	54
69	Aldosterone Stimulates Epidermal Growth Factor Receptor Expression. Journal of Biological Chemistry, 2003, 278, 43060-43066.	3.4	95
70	Transforming growth factor-beta1 reduces megalin- and cubilin-mediated endocytosis of albumin in proximal-tubule-derived opossum kidney cells. Journal of Physiology, 2003, 552, 471-481.	2.9	84
71	Human Epidermal Growth Factor Receptor-1 Expression Renders Chinese Hamster Ovary Cells Sensitive to Alternative Aldosterone Signaling. Journal of Biological Chemistry, 2002, 277, 45892-45897.	3.4	78
72	NHE3 serves as a molecular tool for cAMP-mediated regulation of receptor-mediated endocytosis. American Journal of Physiology - Renal Physiology, 2002, 283, F549-F558.	2.7	30

#	Article	IF	Citations
73	Aldosterone interaction with epidermal growth factor receptor signaling in MDCK cells. American Journal of Physiology - Renal Physiology, 2002, 282, F669-F679.	2.7	65
74	Rapid activation of Na + $/$ H + -exchange in MDCK cells by aldosterone involves MAP-kinases ERK 1/2. Pflugers Archiv European Journal of Physiology, 2001, 441, 781-786.	2.8	89
75	Inhibition of initial transport rate of basolateral organic anion carrier in renal PT by BK and phenylephrine. American Journal of Physiology - Renal Physiology, 1999, 277, F251-F256.	2.7	21
76	Inhibition of Na+-H+exchange impairs receptor-mediated albumin endocytosis in renal proximal tubule-derived epithelial cells from opossum. Journal of Physiology, 1999, 520, 709-721.	2.9	93
77	Non-genomic action of the mineralocorticoid aldosterone on cytosolic sodium in cultured kidney cells. Journal of Physiology, 1998, 511, 255-263.	2.9	49
78	The mineralocorticoid aldosterone activates a proton conductance in cultured kidney cells. American Journal of Physiology - Cell Physiology, 1997, 273, C1673-C1678.	4.6	59
79	Ochratoxin A disturbs pH homeostasis in the kidney: increases in pH and HCO 3 - in the tubules and vasa recta. Pflugers Archiv European Journal of Physiology, 1997, 434, 392-397.	2.8	15
80	RAPID ALDOSTERONE-INDUCED CELL VOLUME INCREASE OF ENDOTHELIAL CELLS MEASURED BY THE ATOMIC FORCE MICROSCOPE. Cell Biology International, 1997, 21, 759-768.	3.0	74
81	Characterization of two MDCK-cell subtypes as a model system to study principal cell and intercalated cell properties. Pflugers Archiv European Journal of Physiology, 1994, 428, 157-162.	2.8	167
82	Ochratoxin A impairs ?postproximal? nephron function in vivo and blocks plasma membrane anion conductance in Madin-Darby canine kidney cells in vitro. Pflugers Archiv European Journal of Physiology, 1993, 425, 401-408.	2.8	32
83	Basolateral uptake and tubular metabolism of L-citrulline in the isolated-perfused non-filtering kidney of the African clawed toad (Xenopus laevis). Pflugers Archiv European Journal of Physiology, 1991, 419, 492-498.	2.8	8
84	On leaking into the lumen, amino acids cross the tubule cells. Secretion of l-citrulline in the isolated-perfused non-filtering kidney of the African clawed toad (Xenopus laevis). Pflugers Archiv European Journal of Physiology, 1991, 419, 499-503.	2.8	9