C Brandon Ogbunugafor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3152796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adaptive Landscape by Environment Interactions Dictate Evolutionary Dynamics in Models of Drug Resistance. PLoS Computational Biology, 2016, 12, e1004710.	1.5	71
2	Proteostasis Environment Shapes Higher-Order Epistasis Operating on Antibiotic Resistance. Genetics, 2019, 212, 565-575.	1.2	30
3	Competition along trajectories governs adaptation rates towards antimicrobial resistance. Nature Ecology and Evolution, 2017, 1, 7.	3.4	26
4	Delayed transmission selects for increased survival of vesicular stomatitis virus. Evolution; International Journal of Organic Evolution, 2015, 69, 117-125.	1.1	24
5	A pivot mutation impedes reverse evolution across an adaptive landscape for drug resistance in Plasmodium vivax. Malaria Journal, 2016, 15, 40.	0.8	22
6	Molecular mechanisms and drivers of pathogen emergence. Trends in Microbiology, 2022, 30, 898-911.	3.5	19
7	Direct transmission via households informs models of disease and intervention dynamics in cholera. PLoS ONE, 2020, 15, e0229837.	1.1	14
8	Cholera dynamics: lessons from an epidemic. Journal of Medical Microbiology, 2021, 70, .	0.7	14
9	Evolution of Increased Survival in RNA Viruses Specialized on Cancer-Derived Cells. American Naturalist, 2013, 181, 585-595.	1.0	13
10	A Reflection on 50 Years of John Maynard Smith's "Protein Space― Genetics, 2020, 214, 749-754.	1.2	13
11	The mutation effect reaction norm (muâ€rn) highlights environmentally dependent mutation effects and epistatic interactions. Evolution; International Journal of Organic Evolution, 2022, 76, 37-48.	1.1	12
12	On the possible role of robustness in the evolution of infectious diseases. Chaos, 2010, 20, 026108.	1.0	9
13	Hepatitis C virus modelled as an indirectly transmitted infection highlights the centrality of injection drug equipment in disease dynamics. Journal of the Royal Society Interface, 2019, 16, 20190334.	1.5	9
14	Combining mathematics and empirical data to predict emergence of RNA viruses that differ in reservoir use. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1919-1930.	1.8	8
15	Variation in microparasite free-living survival and indirect transmission can modulate the intensity of emerging outbreaks. Scientific Reports, 2020, 10, 20786.	1.6	7
16	The endoplasmic reticulum proteostasis network profoundly shapes the protein sequence space accessible to HIV envelope. PLoS Biology, 2022, 20, e3001569.	2.6	7
17	Genetic Background Modifies the Topography of a Fitness Landscape, Influencing the Dynamics of Adaptive Evolution. IEEE Access, 2019, 7, 113675-113683.	2.6	6
18	Lexical Landscapes as large in silico data for examining advanced properties of fitness landscapes. PLoS ONE, 2019, 14, e0220891.	1.1	6

#	Article	IF	CITATIONS
19	A New Take on John Maynard Smith's Concept of Protein Space for Understanding Molecular Evolution. PLoS Computational Biology, 2016, 12, e1005046.	1.5	5
20	The Epidemiological Signature of Pathogen Populations That Vary in the Relationship between Free-Living Parasite Survival and Virulence. Viruses, 2020, 12, 1055.	1.5	5
21	Chimeric dihydrofolate reductases display properties of modularity and biophysical diversity. Protein Science, 2019, 28, 1359-1367.	3.1	3
22	Higher-Order Interactions in Biology: The Curious Case of Epistasis. Understanding Complex Systems, 2022, , 417-433.	0.3	3
23	Experimental evolution for niche breadth in bacteriophage T4 highlights the importance of structural genes. MicrobiologyOpen, 2020, 9, e968.	1.2	2
24	OFFl Models: Novel Schema for Dynamical Modeling of Biological Systems. PLoS ONE, 2016, 11, e0156844.	1.1	2
25	Exploring the expanse between theoretical questions and experimental approaches in the modern study of evolvability. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2023, 340, 8-17.	0.6	2
26	Quantifying Deception. , 2016, , .		1