Michael Schaefer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3152736/publications.pdf

Version: 2024-02-01

95 papers

4,384 citations

35 h-index 63 g-index

107 all docs

107 docs citations

107 times ranked

3654 citing authors

#	Article	IF	CITATIONS
1	Valdecoxib blocks rat TRPV2 channels. European Journal of Pharmacology, 2022, 915, 174702.	1.7	4
2	Self-Reported Practices and Emotions in Prescribing Opioids for Chronic Noncancer Pain: A Cross-Sectional Study of German Physicians. Journal of Clinical Medicine, 2022, 11, 2506.	1.0	0
3	Functional and Anatomical Characterization of Corticotropin-Releasing Factor Receptor Subtypes of the Rat Spinal Cord Involved in Somatic Pain Relief. Molecular Neurobiology, 2021, 58, 5459-5472.	1.9	3
4	Patients' selfâ€reported physical and psychological effects of opioid use in chronic noncancer pain – a retrospective crossâ€sectional analysis. European Journal of Pain, 2021, , .	1.4	2
5	Chronic Naltrexone Therapy Is Associated with Improved Cardiac Function in Volume Overloaded Rats. Cardiovascular Drugs and Therapy, 2021, 35, 733-743.	1.3	5
6	Identification of Mineralocorticoid Receptors, Aldosterone, and Its Processing Enzyme CYP11B2 on Parasympathetic and Sympathetic Neurons in Rat Intracardiac Ganglia. Frontiers in Neuroanatomy, 2021, 15, 802359.	0.9	3
7	Prostanoid Receptor Subtypes and Its Endogenous Ligands with Processing Enzymes within Various Types of Inflammatory Joint Diseases. Mediators of Inflammation, 2020, 2020, 1-13.	1.4	3
8	Neuronal aldosterone elicits a distinct genomic response in pain signaling molecules contributing to inflammatory pain. Journal of Neuroinflammation, 2020, 17 , 183 .	3.1	7
9	Empathy-Related Brain Activity in Somatosensory Cortex Protects From Tactile Priming Effects: A Pilot Study. Frontiers in Human Neuroscience, 2020, 14, 142.	1.0	2
10	A new human adipocyte model with PTEN haploinsufficiency. Adipocyte, 2020, 9, 290-301.	1.3	7
11	S2k guidelines for the diagnosis and treatment of herpes zoster and postherpetic neuralgia. JDDG - Journal of the German Society of Dermatology, 2020, 18, 55-78.	0.4	41
12	Direct Activation of TRPC3 Channels by the Antimalarial Agent Artemisinin. Cells, 2020, 9, 202.	1.8	12
13	Aldosterone Synthase in Peripheral Sensory Neurons Contributes to Mechanical Hypersensitivity during Local Inflammation in Rats. Anesthesiology, 2020, 132, 867-880.	1.3	15
14	Efficacy-Based Perspective to Overcome Reduced Opioid Analgesia of Advanced Painful Diabetic Neuropathy in Rats. Frontiers in Pharmacology, 2019, 10, 347.	1.6	17
15	Identification of mineralocorticoid and glucocorticoid receptors on peripheral nociceptors: Translation of experimental findings from animal to human biology. Brain Research, 2019, 1712, 180-187.	1.1	7
16	Non-invasive patient-controlled analgesia in the management of acute postoperative pain in the hospital setting. Current Medical Research and Opinion, 2018, 34, 1179-1186.	0.9	24
17	Pro- <i>versus </i> Antinociceptive Nongenomic Effects of Neuronal Mineralocorticoid <i>versus </i> Glucocorticoid Receptors during Rat Hind Paw Inflammation. Anesthesiology, 2018, 128, 796-809.	1.3	24
18	The Peripheral Versus Central Antinociception of a Novel Opioid Agonist: Acute Inflammatory Pain in Rats. Neurochemical Research, 2018, 43, 1250-1257.	1.6	28

#	Article	IF	CITATIONS
19	Management of acute pain in the postoperative setting: the importance of quality indicators. Current Medical Research and Opinion, 2018, 34, 187-196.	0.9	62
20	European Pain Federation (<scp>EFIC</scp>) position paper on appropriate use of cannabisâ€based medicines and medical cannabis for chronic pain management. European Journal of Pain, 2018, 22, 1547-1564.	1.4	149
21	Treatment for chronic low back pain: the focus should change to multimodal management that reflects the underlying pain mechanisms. Current Medical Research and Opinion, 2017, 33, 1199-1210.	0.9	39
22	Accessibility of axonal G protein coupled mu-opioid receptors requires conceptual changes of axonal membrane targeting for pain modulation. Journal of Controlled Release, 2017, 268, 352-363.	4.8	16
23	Histopathological Changes in the Kidney following Congestive Heart Failure by Volume Overload in Rats. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-10.	1.9	13
24	Pathological alterations in liver injury following congestive heart failure induced by volume overload in rats. PLoS ONE, 2017, 12, e0184161.	1.1	16
25	Comparative Expression Analyses of Pro- versus Anti-Inflammatory Mediators within Synovium of Patients with Joint Trauma, Osteoarthritis, and Rheumatoid Arthritis. Mediators of Inflammation, 2017, 2017, 1-11.	1.4	14
26	Protein kinase C-mediated mu-opioid receptor phosphorylation and desensitization in rats, and its prevention during early diabetes. Pain, 2016, 157, 910-921.	2.0	23
27	TRPM7 is a molecular substrate of ATP-evoked P2X7-like currents in tumor cells. Journal of General Physiology, 2016, 147, 467-483.	0.9	14
28	Lack of functional P2X7 receptor aggravates brain edema development after middle cerebral artery occlusion. Purinergic Signalling, 2016, 12, 453-463.	1.1	20
29	Membrane-bound glucocorticoid receptors on distinct nociceptive neurons as potential targets for pain control through rapid non-genomic effects. Neuropharmacology, 2016, 111, 1-13.	2.0	44
30	New Morphine Analogs Produce Peripheral Antinociception within a Certain Dose Range of Their Systemic Administration. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 171-181.	1.3	23
31	Prospective clinical observational study evaluating gender-associated differences of preoperative pain intensity. Medicine (United States), 2016, 95, e4077.	0.4	9
32	Evidence for MOR on cell membrane, sarcoplasmatic reticulum and mitochondria in left ventricular myocardium in rats. Heart and Vessels, 2016, 31, 1380-1388.	0.5	8
33	Acute mechanical sensitization of peripheral nociceptors by aldosterone through non-genomic activation of membrane bound mineralocorticoid receptors in naive rats. Neuropharmacology, 2016, 107, 251-261.	2.0	27
34	Cellular localization and adaptive changes of the cardiac delta opioid receptor system in an experimental model of heart failure in rats. Heart and Vessels, 2016, 31, 241-250.	0.5	13
35	Diagnostic Performance of Self-Assessment for Constipation in Patients With Long-Term Opioid Treatment. Medicine (United States), 2015, 94, e2227.	0.4	0
36	Pharmacotherapy in Pain Patients with Substance Abuse. Journal of Pain and Palliative Care Pharmacotherapy, 2015, 29, 59-60.	0.5	0

#	Article	IF	Citations
37	Upregulation of the kappa opioidergic system in left ventricular rat myocardium in response to volume overload. Pharmacological Research, 2015, 102, 33-41.	3.1	14
38	A Modified Approach to Induce Predictable Congestive Heart Failure by Volume Overload in Rats. PLoS ONE, 2014, 9, e87531.	1.1	19
39	Influence of high-dose intraoperative remifentanil with or without amantadine on postoperative pain intensity and morphine consumption in major abdominal surgery patients. European Journal of Anaesthesiology, 2014, 31, 41-49.	0.7	20
40	Transient receptor potential ankyrin 1 (TRPA1) channel activation by the thienopyridine-type drugs ticlopidine, clopidogrel, and prasugrel. Cell Calcium, 2014, 55, 200-207.	1.1	14
41	The presence of mu-, delta-, and kappa-opioid receptors in human heart tissue. Heart and Vessels, 2014, 29, 855-863.	0.5	53
42	Thoracic epidural anesthesia decreases endotoxin-induced endothelial injury. BMC Anesthesiology, 2014, 14, 23.	0.7	12
43	New insights into mechanisms of opioid inhibitory effects on capsaicin-induced TRPV1 activity during painful diabetic neuropathy. Neuropharmacology, 2014, 85, 142-150.	2.0	26
44	The phenothiazine-class antipsychotic drugs prochlorperazine and trifluoperazine are potent allosteric modulators of the human P2X7 receptor. Neuropharmacology, 2013, 75, 365-379.	2.0	31
45	Peripheral antinociceptive efficacy and potency of a novel opioid compound 14- O -MeM6SU in comparison to known peptide and non-peptide opioid agonists in a rat model of inflammatory pain. European Journal of Pharmacology, 2013, 713, 54-57.	1.7	19
46	Reduced Number, G Protein Coupling, and Antinociceptive Efficacy of Spinal Mu-Opioid Receptors in Diabetic Rats Are Reversed by Nerve Growth Factor. Journal of Pain, 2013, 14, 720-730.	0.7	36
47	The painful Toll of ethanol and its metabolites: A new molecular pattern of recognition by Toll-like receptors?. Brain, Behavior, and Immunity, 2013, 30, 22-23.	2.0	3
48	Opioid withdrawal increases transient receptor potential vanilloid 1 activity in a protein kinase A-dependent manner. Pain, 2013, 154, 598-608.	2.0	54
49	Rab7 Silencing Prevents \hat{l} ¼-Opioid Receptor Lysosomal Targeting and Rescues Opioid Responsiveness to Strengthen Diabetic Neuropathic Pain Therapy. Diabetes, 2013, 62, 1308-1319.	0.3	41
50	Regional Sympathetic Blockade Attenuates Activation of Intestinal Macrophages and Reduces Gut Barrier Failure. Anesthesiology, 2013, 118, 134-142.	1.3	36
51	The central versus peripheral antinociceptive effects of $\hat{l}\frac{1}{4}$ -opioid receptor agonists in the new model of rat visceral pain. Brain Research Bulletin, 2012, 87, 238-243.	1.4	28
52	Impaired Nociception and Peripheral Opioid Antinociception in Mice Lacking Both Kinin B1 and B2 Receptors. Anesthesiology, 2012, 116, 448-457.	1.3	38
53	Make a CHANGE: optimising communication and pain management decisions. Current Medical Research and Opinion, 2011, 27, 481-488.	0.9	48
54	Systematic review of tapentadol in chronic severe pain. Current Medical Research and Opinion, 2011, 27, 1907-1930.	0.9	70

#	Article	IF	Citations
55	p38 Mitogen–activated Protein Kinase Activation by Nerve Growth Factor in Primary Sensory Neurons Upregulates μ-Opioid Receptors to Enhance Opioid Responsiveness Toward Better Pain Control. Anesthesiology, 2011, 114, 150-161.	1.3	18
56	Developmental expression of l´â€opioid receptors during maturation of the parasympathetic, sympathetic, and sensory innervations of the neonatal heart: Early targets for opioid regulation of autonomic control. Journal of Comparative Neurology, 2011, 519, 957-971.	0.9	24
57	PAIN EDUCATION – a modular learning approach. Current Medical Research and Opinion, 2011, 27, 2081-2082.	0.9	0
58	Identification of μ―and κâ€opioid receptors as potential targets to regulate parasympathetic, sympathetic, and sensory neurons within rat intracardiac ganglia. Journal of Comparative Neurology, 2010, 518, 3836-3847.	0.9	24
59	Local pulmonary opioid network in patients with lung cancer: a putative modulator of respiratory function. Pharmacological Reports, 2010, 62, 139-149.	1.5	19
60	Enkephalin, its precursor, processing enzymes, and receptor as part of a local opioid network throughout the respiratory system of lung cancer patients. Human Pathology, 2010, 41, 632-642.	1.1	26
61	Involvement of the peripheral sensory and sympathetic nervous system in the vascular endothelial expression of ICAM-1 and the recruitment of opioid-containing immune cells to inhibit inflammatory pain. Brain, Behavior, and Immunity, 2010, 24, 1310-1323.	2.0	30
62	Thoracic Epidural Anesthesia Attenuates Endotoxin-induced Impairment of Gastrointestinal Organ Perfusion. Anesthesiology, 2010, 113, 126-133.	1.3	21
63	Dynorphin expression, processing and receptors in the alveolar macrophages, cancer cells and bronchial epithelium of lung cancer patients. Histology and Histopathology, 2010, 25, 755-64.	0.5	8
64	Mycobacteria Attenuate Nociceptive Responses by Formyl Peptide Receptor Triggered Opioid Peptide Release from Neutrophils. PLoS Pathogens, 2009, 5, e1000362.	2.1	79
65	Peripheral Non-Viral MIDGE Vector-Driven Delivery of \hat{l}^2 -Endorphin in Inflammatory Pain. Molecular Pain, 2009, 5, 1744-8069-5-72.	1.0	25
66	Novel concepts for analgesia in severe painâ€"current strategies and future innovations. European Journal of Pain Supplements, 2009, 3, 6-10.	0.0	8
67	Natural orifice transluminal endoscopic surgery (NOTES): implications for anesthesia. F1000 Medicine Reports, 2009, 1, .	2.9	5
68	Volume therapy with colloid solutions preserves intestinal microvascular perfusion in endotoxaemia. Resuscitation, 2008, 76, 120-128.	1.3	26
69	The Transactivated Epidermal Growth Factor Receptor Recruits Pyk2 to Regulate Src Kinase Activity. Journal of Biological Chemistry, 2008, 283, 27748-27756.	1.6	17
70	Chronic morphine use does not induce peripheral tolerance in a rat model of inflammatory pain. Journal of Clinical Investigation, 2008, 118 , $1065-73$.	3.9	105
71	Topical Fentanyl in a Randomized, Double-blind Study in Patients With Corneal Damage. Clinical Journal of Pain, 2008, 24, 690-696.	0.8	33
72	Inhibition of Inflammatory Pain by CRF at Peripheral, Spinal and Supraspinal Sites: Involvement of Areas Coexpressing CRF Receptors and Opioid Peptides. Neuropsychopharmacology, 2007, 32, 2530-2542.	2.8	44

#	Article	IF	CITATIONS
73	Â-Endorphin, Met-enkephalin and corresponding opioid receptors within synovium of patients with joint trauma, osteoarthritis and rheumatoid arthritis. Annals of the Rheumatic Diseases, 2007, 66, 871-879.	0.5	105
74	Nerve growth factor governs the enhanced ability of opioids to suppress inflammatory pain. Brain, 2007, 130, 502-513.	3.7	100
75	\hat{l} 4-Opioid Receptor Activation Modulates Transient Receptor Potential Vanilloid 1 (TRPV1) Currents in Sensory Neurons in A Model of Inflammatory Pain. Molecular Pharmacology, 2007, 71, 12-18.	1.0	131
76	Involvement of Intra-articular Corticotropin-releasing Hormone in Postoperative Pain Modulation. Clinical Journal of Pain, 2007, 23, 136-142.	0.8	47
77	Enhanced Postoperative Sensitivity to Painful Pressure Stimulation After Intraoperative High Dose Remifentanil in Patients Without Significant Surgical Site Pain. Clinical Journal of Pain, 2007, 23, 605-611.	0.8	59
78	CXCR1/2 ligands induce p38 MAPK-dependent translocation and release of opioid peptides from primary granules in vitro and in vivo. Brain, Behavior, and Immunity, 2007, 21, 1021-1032.	2.0	53
79	Relative contribution of peripheral versus central opioid receptors to antinociception. Brain Research, 2007, 1160, 30-38.	1.1	111
80	Lymphocytes upregulate signal sequence-encoding proopiomelanocortin mRNA and beta-endorphin during painful inflammation in vivo. Journal of Neuroimmunology, 2007, 183, 133-145.	1.1	61
81	Neurokinin-1 Receptor Antagonists Inhibit the Recruitment of Opioid-containing Leukocytes and Impair Peripheral Antinociception. Anesthesiology, 2007, 107, 1009-1017.	1.3	35
82	Selective local PMN recruitment by CXCL1 or CXCL2/3 injection does not cause inflammatory pain. Journal of Leukocyte Biology, 2006, 79, 1022-1032.	1.5	81
83	Pain control by CXCR2 ligands through Ca 2+ â€regulated release of opioid peptides from polymorphonuclear cells. FASEB Journal, 2006, 20, 2627-2629.	0.2	110
84	Peripheral opioid analgesia: Clinical applications. Current Pain and Headache Reports, 2005, 9, 36-44.	1.3	11
85	Subcellular Pathways of \hat{I}^2 -Endorphin Synthesis, Processing, and Release from Immunocytes in Inflammatory Pain. Endocrinology, 2004, 145, 1331-1341.	1.4	161
86	TRPV1 Acts as Proton Channel to Induce Acidification in Nociceptive Neurons. Journal of Biological Chemistry, 2004, 279, 34553-34561.	1.6	134
87	Characterization of \hat{l} ¹ /4 Opioid Receptor Binding and G Protein Coupling in Rat Hypothalamus, Spinal Cord, and Primary Afferent Neurons during Inflammatory Pain. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 712-718.	1.3	79
88	Sympathetic activation triggers endogenous opioid release and analgesia within peripheral inflamed tissue. European Journal of Neuroscience, 2004, 20, 92-100.	1.2	124
89	Selectins and integrins but not platelet-endothelial cell adhesion molecule-1 regulate opioid inhibition of inflammatory pain. British Journal of Pharmacology, 2004, 142, 772-780.	2.7	53
90	Effects of thoracic epidural anaesthesia on intestinal microvascular perfusion in a rodent model of normotensive endotoxaemia. Intensive Care Medicine, 2004, 30, 2094-2101.	3.9	35

#	Article	IF	CITATIONS
91	Endogenous peripheral antinociception in early inflammation is not limited by the number of opioid-containing leukocytes but by opioid receptor expression. Pain, 2004, 108, 67-75.	2.0	72
92	Control of inflammatory pain by chemokine-mediated recruitment of opioid-containing polymorphonuclear cells. Pain, 2004, 112, 229-238.	2.0	115
93	Attacking pain at its source: new perspectives on opioids. Nature Medicine, 2003, 9, 1003-1008.	15.2	535
94	Immunohistochemical localization of endomorphin-1 and endomorphin-2 in immune cells and spinal cord in a model of inflammatory pain. Journal of Neuroimmunology, 2002, 126, 5-15.	1.1	120
95	Opioid Peptide–expressing Leukocytes. Anesthesiology, 2001, 95, 500-508.	1.3	206