Akos Nyerges

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3152636/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	inPOSE: A Flexible Toolbox for Chromosomal Cloning and Amplification of Bacterial Transgenes. Microorganisms, 2022, 10, 236.	3.6	0
2	New dual ATP-competitive inhibitors of bacterial DNA gyrase and topoisomerase IV active against ESKAPE pathogens. European Journal of Medicinal Chemistry, 2021, 213, 113200.	5.5	15
3	Recombineering and MAGE. Nature Reviews Methods Primers, 2021, 1, .	21.2	47
4	ssDNA recombineering boosts in vivo evolution of nanobodies displayed on bacterial surfaces. Communications Biology, 2021, 4, 1169.	4.4	6
5	Hybrid Inhibitors of DNA Gyrase A and B: Design, Synthesis and Evaluation. Pharmaceutics, 2021, 13, 6.	4.5	9
6	Dual <i>Escherichia coli</i> DNA Gyrase A and B Inhibitors with Antibacterial Activity. ChemMedChem, 2020, 15, 265-269.	3.2	16
7	Mismatch repair hierarchy of <i>Pseudomonas putida</i> revealed by mutagenic ssDNA recombineering of the <i>pyrF</i> gene. Environmental Microbiology, 2020, 22, 45-58.	3.8	22
8	Multiple-Site Diversification of Regulatory Sequences Enables Interspecies Operability of Genetic Devices. ACS Synthetic Biology, 2020, 9, 104-114.	3.8	15
9	Rational design of balanced dual-targeting antibiotics with limited resistance. PLoS Biology, 2020, 18, e3000819.	5.6	20
10	Improved bacterial recombineering by parallelized protein discovery. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13689-13698.	7.1	82
11	High-Efficiency Multi-site Genomic Editing of Pseudomonas putida through Thermoinducible ssDNA Recombineering. IScience, 2020, 23, 100946.	4.1	32
12	Targeted mutagenesis of multiple chromosomal regions in microbes. Current Opinion in Microbiology, 2020, 57, 22-30.	5.1	10
13	Second-generation 4,5,6,7-tetrahydrobenzo[<i>d</i>]thiazoles as novel DNA gyrase inhibitors. Future Medicinal Chemistry, 2020, 12, 277-297.	2.3	9
14	Synthetic genomes with altered genetic codes. Current Opinion in Systems Biology, 2020, 24, 32-40.	2.6	7
15	Rapid Evolution of Reduced Susceptibility against a Balanced Dual-Targeting Antibiotic through Stepping-Stone Mutations. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	23
16	Limited Evolutionary Conservation of the Phenotypic Effects of Antibiotic Resistance Mutations. Molecular Biology and Evolution, 2019, 36, 1601-1611.	8.9	37
17	CRISPR-interference-based modulation of mobile genetic elements in bacteria. Synthetic Biology, 2019, 4, ysz008.	2.2	16
18	Enzyme promiscuity shapes adaptation to novel growth substrates. Molecular Systems Biology, 2019, 15, e8462.	7.2	52

AKOS NYERGES

#	Article	IF	CITATIONS
19	An optimised series of substituted N-phenylpyrrolamides as DNA gyrase B inhibitors. European Journal of Medicinal Chemistry, 2019, 167, 269-290.	5.5	36
20	Phylogenetic barriers to horizontal transfer of antimicrobial peptide resistance genes in the human gut microbiota. Nature Microbiology, 2019, 4, 447-458.	13.3	68
21	A standardized workflow for surveying recombinases expands bacterial genomeâ€editing capabilities. Microbial Biotechnology, 2018, 11, 176-188.	4.2	43
22	Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nature Microbiology, 2018, 3, 718-731.	13.3	325
23	New N -phenylpyrrolamide DNA gyrase B inhibitors: Optimization of efficacy and antibacterial activity. European Journal of Medicinal Chemistry, 2018, 154, 117-132.	5.5	35
24	Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5726-E5735.	7.1	74
25	Genome-Wide Abolishment of Mobile Genetic Elements Using Genome Shuffling and CRISPR/Cas-Assisted MAGE Allows the Efficient Stabilization of a Bacterial Chassis. ACS Synthetic Biology, 2017, 6, 1471-1483.	3.8	55
26	Phenotypic heterogeneity promotes adaptive evolution. PLoS Biology, 2017, 15, e2000644.	5.6	128
27	System-level genome editing in microbes. Current Opinion in Microbiology, 2016, 33, 113-122.	5.1	23
28	A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2502-2507.	7.1	190
29	Perturbation of Iron Homeostasis Promotes the Evolution of Antibiotic Resistance. Molecular Biology and Evolution, 2014, 31, 2793-2804.	8.9	54
30	Conditional DNA repair mutants enable highly precise genome engineering. Nucleic Acids Research, 2014, 42, e62-e62.	14.5	46
31	Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nature Communications, 2014, 5, 4352.	12.8	195