
Oscar Zaragoza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3152456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Combination of Iron and Copper Increases Pathogenicity and Induces Proteins Related to the Main Virulence Factors in Clinical Isolates of Cryptococcus neoformans var. grubii. Journal of Fungi (Basel, Switzerland), 2022, 8, 57.	1.5	3
2	Role of IL-17 in Morphogenesis and Dissemination of Cryptococcus neoformans during Murine Infection. Microorganisms, 2022, 10, 373.	1.6	1
3	Deciphering the Association among Pathogenicity, Production and Polymorphisms of Capsule/Melanin in Clinical Isolates of Cryptococcus neoformans var. grubii VNI. Journal of Fungi (Basel, Switzerland), 2022, 8, 245.	1.5	3
4	Plasma Membrane Phosphatidylinositol-4-Phosphate Is Not Necessary for Candida albicans Viability yet Is Key for Cell Wall Integrity and Systemic Infection. MBio, 2022, 13, e0387321.	1.8	5
5	Minilungs from Human Embryonic Stem Cells to Study the Interaction of Streptococcus pneumoniae with the Respiratory Tract. Microbiology Spectrum, 2022, 10, .	1.2	6
6	Polyenes and Amphotericin B. , 2021, , 421-426.		1
7	The lymphocyte scavenger receptor CD5 plays a nonredundant role in fungal infection. Cellular and Molecular Immunology, 2021, 18, 498-500.	4.8	4
8	Infections by Cryptococcus species. , 2021, , 576-583.		0
9	Adaptation of the emerging pathogenic yeast <i>Candida auris</i> to high caspofungin concentrations correlates with cell wall changes. Virulence, 2021, 12, 1400-1417.	1.8	15
10	Population genomics of the pathogenic yeast Candida tropicalis identifies hybrid isolates in environmental samples. PLoS Pathogens, 2021, 17, e1009138.	2.1	36
11	Cell Wall Integrity Pathway Involved in Morphogenesis, Virulence and Antifungal Susceptibility in Cryptococcus neoformans. Journal of Fungi (Basel, Switzerland), 2021, 7, 831.	1.5	12
12	The Lymphocytic Scavenger Receptor CD5 Shows Therapeutic Potential in Mouse Models of Fungal Infection. Antimicrobial Agents and Chemotherapy, 2020, 65, .	1.4	1
13	Human IgM Inhibits the Formation of Titan-Like Cells in Cryptococcus neoformans. Infection and Immunity, 2020, 88, .	1.0	16
14	Identification of Off-Patent Drugs That Show Synergism with Amphotericin B or That Present Antifungal Action against Cryptococcus neoformans and <i>Candida</i> spp. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	31
15	Rhodotorula dairenensis fungemia in a patient with cancer. Revista Iberoamericana De Micologia, 2020, 37, 63-64.	0.4	1
16	Clinical and Laboratory Development of Echinocandin Resistance in Candida glabrata: Molecular Characterization. Frontiers in Microbiology, 2019, 10, 1585.	1.5	30
17	EUCAST Reference Testing of Rezafungin Susceptibility and Impact of Choice of Plastic Plates. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	11
18	Basic principles of the virulence of <i>Cryptococcus</i> . Virulence, 2019, 10, 490-501.	1.8	154

#	Article	IF	CITATIONS
19	Identification of Off-Patent Compounds That Present Antifungal Activity Against the Emerging Fungal Pathogen Candida auris. Frontiers in Cellular and Infection Microbiology, 2019, 9, 83.	1.8	57
20	Detection and treatment of <i>Candida auris</i> in an outbreak situation: risk factors for developing colonization and candidemia by this new species in critically ill patients. Expert Review of Anti-Infective Therapy, 2019, 17, 295-305.	2.0	49
21	Discordant susceptibility of inbred C57BL/6 versus outbred CD1 mice to experimental fungal sepsis. Cellular Microbiology, 2019, 21, e12995.	1.1	12
22	Immune Response of Galleria mellonella against Human Fungal Pathogens. Journal of Fungi (Basel,) Tj ETQqO 0 0	rgBT /Ove 1.5	rlock 10 Tf 50
23	Characterization of the atypical Ppz/Hal3 phosphatase system from the pathogenic fungusCryptococcus neoformans. Molecular Microbiology, 2019, 111, 898-917.	1.2	7
24	Multicentre determination of rezafungin (CD101) susceptibility of Candida species by the EUCAST method. Clinical Microbiology and Infection, 2018, 24, 1200-1204.	2.8	30
25	Cryptococcal Titan Cells: When Yeast Cells Are All Grown up. Current Topics in Microbiology and Immunology, 2018, 422, 101-120.	0.7	14
26	Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e180057.	0.8	69
27	Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals. PLoS Pathogens, 2018, 14, e1007007.	2.1	98
28	Candida guilliermondii Complex Is Characterized by High Antifungal Resistance but Low Mortality in	1.4	33

20	22 Cases of Candidemia. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.1	00
29	Epidemiology and prognosis of candidaemia in elderly patients. Mycoses, 2017, 60, 808-817.	1.8	20
30	Fungemia due to rare opportunistic yeasts: data from a population-based surveillance in Spain. Medical Mycology, 2017, 55, 125-136.	0.3	65
31	Evaluation of the possible influence of trailing and paradoxical effects on the clinical outcome of patients with candidemia. Clinical Microbiology and Infection, 2017, 23, 49.e1-49.e8.	2.8	41
32	Infections by Cryptococcus species. , 2017, , .		0
33	Capsule Enlargement in Cryptococcus neoformans Is Dependent on Mitochondrial Activity. Frontiers in Microbiology, 2017, 8, 1423.	1.5	26
34	Evaluation of MALDI-TOF-MS for the Identification of Yeast Isolates Causing Bloodstream Infection. Clinical Laboratory, 2017, 63, 699-703.	0.2	9
35	Impact of Resistance to Fluconazole on Virulence and Morphological Aspects of Cryptococcus neoformans and Cryptococcus gattii Isolates. Frontiers in Microbiology, 2016, 7, 153.	1.5	20

36Biofilm Production and Antibiofilm Activity of Echinocandins and Liposomal Amphotericin B in
Echinocandin-Resistant Yeast Species. Antimicrobial Agents and Chemotherapy, 2016, 60, 3579-3586.1.419

Oscar Zaragoza

#	Article	IF	CITATIONS
37	Fungal morphogenetic changes inside the mammalian host. Seminars in Cell and Developmental Biology, 2016, 57, 100-109.	2.3	31
38	Role of catalase overproduction in drug resistance and virulence in <i>Candida albicans</i> . Future Microbiology, 2016, 11, 1279-1297.	1.0	24
39	The formation of titan cells in <i>Cryptococcus neoformans</i> depends on the mouse strain and correlates with induction of Th2-type responses. Cellular Microbiology, 2016, 18, 111-124.	1.1	41
40	New Panfungal Real-Time PCR Assay for Diagnosis of Invasive Fungal Infections. Journal of Clinical Microbiology, 2016, 54, 2910-2918.	1.8	62
41	Cell Wall Changes in Amphotericin B-Resistant Strains from Candida tropicalis and Relationship with the Immune Responses Elicited by the Host. Antimicrobial Agents and Chemotherapy, 2016, 60, 2326-2335.	1.4	60
42	Role of Cln1 during melanization of Cryptococcus neoformans. Frontiers in Microbiology, 2015, 6, 798.	1.5	19
43	<i>Cryptococcus neoformans</i> induces antimicrobial responses and behaves as a facultative intracellular pathogen in the non mammalian model <i>Galleria mellonella</i> . Virulence, 2015, 6, 66-74.	1.8	45
44	Pathogenicity of Cryptococcus neoformans: an Evolutionary Perspective. , 2014, , 581-590.		1
45	Expanding the use of alternative models to investigate novel aspects of immunity to microbial pathogens. Virulence, 2014, 5, 454-456.	1.8	13
46	Capsule Growth in Cryptococcus neoformans Is Coordinated with Cell Cycle Progression. MBio, 2014, 5, e00945-14.	1.8	65
47	Molecular Identification and Antifungal Susceptibility of Yeast Isolates Causing Fungemia Collected in a Population-Based Study in Spain in 2010 and 2011. Antimicrobial Agents and Chemotherapy, 2014, 58, 1529-1537.	1.4	112
48	Paradoxical Growth of Candida albicans in the Presence of Caspofungin Is Associated with Multiple Cell Wall Rearrangements and Decreased Virulence. Antimicrobial Agents and Chemotherapy, 2014, 58, 1071-1083.	1.4	70
49	Epidemiology and predictive factors for early and late mortality in Candida bloodstream infections: a population-based surveillance in Spain. Clinical Microbiology and Infection, 2014, 20, O245-O254.	2.8	241
50	A Multiplex Real-Time PCR Assay for Identification of Pneumocystis jirovecii, Histoplasma capsulatum, and Cryptococcus neoformans/Cryptococcus gattii in Samples from AIDS Patients with Opportunistic Pneumonia. Journal of Clinical Microbiology, 2014, 52, 1168-1176.	1.8	57
51	The Production of Reactive Oxygen Species Is a Universal Action Mechanism of Amphotericin B against Pathogenic Yeasts and Contributes to the Fungicidal Effect of This Drug. Antimicrobial Agents and Chemotherapy, 2014, 58, 6627-6638.	1.4	158
52	Initial Use of Echinocandins Does Not Negatively Influence Outcome in Candida parapsilosis Bloodstream Infection: A Propensity Score Analysis. Clinical Infectious Diseases, 2014, 58, 1413-1421.	2.9	104
53	Distinct and redundant roles of exonucleases in Cryptococcus neoformans: Implications for virulence and mating. Fungal Genetics and Biology, 2014, 73, 20-28.	0.9	10
54	Candida tropicalis Antifungal Cross-Resistance Is Related to Different Azole Target (Erg11p) Modifications. Antimicrobial Agents and Chemotherapy, 2013, 57, 4769-4781.	1.4	96

#	Article	IF	CITATIONS
55	Titan cells in Cryptococcus neoformans: cells with a giant impact. Current Opinion in Microbiology, 2013, 16, 409-413.	2.3	165
56	<i>Galleria mellonella</i> as a model host to study <i>Paracoccidioides lutzii</i> and <i>Histoplasma capsulatum</i> . Virulence, 2013, 4, 139-146.	1.8	65
57	The non-mammalian host <i>Galleria mellonella</i> can be used to study the virulence of the fungal pathogen <i>Candida tropicalis</i> and the efficacy of antifungal drugs during infection by this pathogenic yeast. Medical Mycology, 2013, 51, 461-472.	0.3	98
58	Comparison between the EUCAST Procedure and the Etest for Determination of the Susceptibility of Candida Species Isolates to Micafungin. Antimicrobial Agents and Chemotherapy, 2013, 57, 5767-5770.	1.4	13
59	Antifungal Efficacy during Candida krusei Infection in Non-Conventional Models Correlates with the Yeast In Vitro Susceptibility Profile. PLoS ONE, 2013, 8, e60047.	1.1	127
60	Recurrent Episodes of Candidemia Due to Candida glabrata with a Mutation in Hot Spot 1 of the <i>FKS2</i> Gene Developed after Prolonged Therapy with Caspofungin. Antimicrobial Agents and Chemotherapy, 2012, 56, 3417-3419.	1.4	27
61	It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Frontiers in Microbiology, 2012, 3, 286.	1.5	207
62	Catch me if you can: phagocytosis and killing avoidance by Cryptococcus neoformans. FEMS Immunology and Medical Microbiology, 2012, 64, 147-161.	2.7	79
63	Amphotericin B induces trehalose synthesis and simultaneously activates an antioxidant enzymatic response in Candida albicans. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 777-783.	1.1	35
64	Multiple Disguises for the Same Party: The Concepts of Morphogenesis and Phenotypic Variations in Cryptococcus neoformans?. Frontiers in Microbiology, 2011, 2, 181.	1.5	37
65	Amphotericin B mediates killing in Cryptococcus neoformans through the induction of a strong oxidative burst. Microbes and Infection, 2011, 13, 457-467.	1.0	92
66	The Interaction between Candida krusei and Murine Macrophages Results in Multiple Outcomes, Including Intracellular Survival and Escape from Killing. Infection and Immunity, 2011, 79, 2136-2144.	1.0	47
67	High-Resolution Melting Analysis for Identification of the Cryptococcus neoformans-Cryptococcus gattii Complex. Journal of Clinical Microbiology, 2011, 49, 3663-3666.	1.8	25
68	Process Analysis of Variables for Standardization of Antifungal Susceptibility Testing of Nonfermentative Yeasts. Antimicrobial Agents and Chemotherapy, 2011, 55, 1563-1570.	1.4	33
69	Frequency of Voriconazole ResistanceIn Vitroamong Spanish Clinical Isolates ofCandidaspp. According to Breakpoints Established by the Antifungal Subcommittee of the European Committee on Antimicrobial Susceptibility Testing. Antimicrobial Agents and Chemotherapy, 2011, 55, 1794-1797.	1.4	20
70	Cryptococcus neoformans Capsular Enlargement and Cellular Gigantism during Galleria mellonella Infection. PLoS ONE, 2011, 6, e24485.	1.1	87
71	Fungal Cell Gigantism during Mammalian Infection. PLoS Pathogens, 2010, 6, e1000945.	2.1	266
72	Susceptibility profile of clinical isolates of non- <i>Cryptococcus neoformans</i> /non- <i>Cryptococcus gattii Cryptococcus</i> species and literature review. Medical Mycology, 2010, 48, 90-96.	0.3	51

#	Article	IF	CITATIONS
73	Chapter 4 The Capsule of the Fungal Pathogen Cryptococcus neoformans. Advances in Applied Microbiology, 2009, 68, 133-216.	1.3	380
74	In vitro susceptibility of Cryptococcus gattii clinical isolates. Clinical Microbiology and Infection, 2008, 14, 727-730.	2.8	57
75	Capsule enlargement in <i>Cryptococcus neoformans</i> confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cellular Microbiology, 2008, 10, 2043-2057.	1.1	219
76	Update on the epidemiology and diagnosis of invasive fungal infection. International Journal of Antimicrobial Agents, 2008, 32, S143-S147.	1.1	58
77	Pharmacotherapy of yeast infections. Expert Opinion on Pharmacotherapy, 2008, 9, 2801-2816.	0.9	21
78	Finite-Element Model of Interaction between Fungal Polysaccharide and Monoclonal Antibody in the Capsule of Cryptococcus neoformans. Journal of Physical Chemistry B, 2008, 112, 8514-8522.	1.2	15
79	The Capsule of the Fungal Pathogen Cryptococcus neoformans Paradoxically Inhibits Invasive Growth. The Open Mycology Journal, 2008, 1, 29-39.	0.8	3
80	Radial Mass Density, Charge, and Epitope Distribution in the Cryptococcus neoformans Capsule. Eukaryotic Cell, 2007, 6, 95-109.	3.4	55
81	The Relative Susceptibility of Mouse Strains to Pulmonary Cryptococcus neoformans Infection Is Associated with Pleiotropic Differences in the Immune Response. Infection and Immunity, 2007, 75, 2729-2739.	1.0	88
82	The volume and hydration of the Cryptococcus neoformans polysaccharide capsule. Fungal Genetics and Biology, 2007, 44, 180-186.	0.9	58
83	Vesicular Polysaccharide Export in Cryptococcus neoformans Is a Eukaryotic Solution to the Problem of Fungal Trans-Cell Wall Transport. Eukaryotic Cell, 2007, 6, 48-59.	3.4	454
84	Structural and functional characterization of glycosylation in an immunoglobulin G1 to Cryptococcus neoformans glucuronoxylomannan. Molecular Immunology, 2006, 43, 987-998.	1.0	11
85	The capsular dynamics of Cryptococcus neoformans. Trends in Microbiology, 2006, 14, 497-505.	3.5	78
86	Characterization of a flocculation-like phenotype in Cryptococcus neoformans and its effects on pathogenesis. Cellular Microbiology, 2006, 8, 1730-1739.	1.1	14
87	Monoclonal antibodies can affect complement deposition on the capsule of the pathogenic fungus Cryptococcus neoformans by both classical pathway activation and steric hindrance. Cellular Microbiology, 2006, 8, 1862-1876.	1.1	31
88	Equatorial ring-like channels in theCryptococcus neoformanspolysaccharide capsule. FEMS Yeast Research, 2006, 6, 662-666.	1.1	13
89	The polysaccharide capsule of the pathogenic fungus Cryptococcus neoformans enlarges by distal growth and is rearranged during budding. Molecular Microbiology, 2006, 59, 67-83.	1.2	84
90	Efficacy of voriconazole in experimental Cryptococcus neoformans infection. Mycopathologia, 2006, 162, 111-114.	1.3	13

#	Article	IF	CITATIONS
91	Radiological Studies Reveal Radial Differences in the Architecture of the Polysaccharide Capsule of Cryptococcus neoformans. Eukaryotic Cell, 2005, 4, 465-475.	3.4	83
92	Effect of Amphotericin B on Capsule and Cell Size in Cryptococcus neoformans during Murine Infection. Antimicrobial Agents and Chemotherapy, 2005, 49, 4358-4361.	1.4	14
93	Antibody-Mediated Protection against Cryptococcus neoformans Pulmonary Infection Is Dependent on B Cells. Infection and Immunity, 2005, 73, 1141-1150.	1.0	66
94	Comparative analysis of Cryptococcus neoformans acid-resistant particles generated from pigmented cells grown in different laccase substrates. Fungal Genetics and Biology, 2005, 42, 989-998.	0.9	46
95	Immunoreactivity of Cryptococcal Antigen Is Not Stable under Prolonged Incubations in Human Serum. Journal of Clinical Microbiology, 2004, 42, 2786-2788.	1.8	12
96	Antibodies Produced in Response to Cryptococcus neoformans Pulmonary Infection in Mice Have Characteristics of Nonprotective Antibodies. Infection and Immunity, 2004, 72, 4271-4274.	1.0	22
97	Experimental modulation of capsule size in Cryptococcus neoformans. Biological Procedures Online, 2004, 6, 10-15.	1.4	218
98	Effects of Voriconazole on Cryptococcus neoformans. Antimicrobial Agents and Chemotherapy, 2004, 48, 2014-2020.	1.4	71
99	Trehalose accumulation induced during the oxidative stress response is independent of TPS1 mRNA levels in Candida albicans. International Microbiology, 2003, 6, 121-125.	1.1	20
100	The efficacy of complement-mediated phagocytosis of Cryptococcus neoformans is dependent on the location of C3 in the polysaccharide capsule and involves both direct and indirectC3-mediated interactions. European Journal of Immunology, 2003, 33, 1957-1967.	1.6	113
101	Induction of Capsule Growth in Cryptococcus neoformans by Mammalian Serum and CO2. Infection and Immunity, 2003, 71, 6155-6164.	1.0	154
102	Generation of disruption cassettes in vivo using a PCR product and Saccharomyces cerevisiae. Journal of Microbiological Methods, 2003, 52, 141-145.	0.7	12
103	More Is Not Necessarily Better: Prozone-Like Effects in Passive Immunization with IgG. Journal of Immunology, 2003, 170, 3621-3630.	0.4	147
104	Disruption in Candida albicans of the TPS2 gene encoding trehalose-6-phosphate phosphatase affects cell integrity and decreases infectivity The EMBL accession number for the sequence reported in this paper is AJ242990 Microbiology (United Kingdom), 2002, 148, 1281-1290.	0.7	59
105	Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology (United Kingdom), 2002, 148, 2599-2606.	0.7	162
106	Elements from the cAMP signaling pathway are involved in the control of expression of the yeast gluconeogenic geneFBP1. FEBS Letters, 2001, 506, 262-266.	1.3	13
107	Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae. Biochemical Journal, 2001, 359, 193.	1.7	15
108	Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae. Biochemical Journal, 2001, 359, 193-201.	1.7	21

#	Article	IF	CITATIONS
109	Pseudohyphal growth is induced in Saccharomyces cerevisiae by a combination of stress and cAMP signalling. Antonie Van Leeuwenhoek, 2000, 78, 187-194.	0.7	45
110	Isolation of the MIG1 Gene from Candida albicans and Effects of Its Disruption on Catabolite Repression. Journal of Bacteriology, 2000, 182, 320-326.	1.0	67
111	Cyclic AMP Can Decrease Expression of Genes Subject to Catabolite Repression in Saccharomyces cerevisiae. Journal of Bacteriology, 1999, 181, 2640-2642.	1.0	23
112	Functional analysis of upstream activating elements in the promoter of the FBP1 gene from Saccharomyces cerevisiae. Current Genetics, 1998, 33, 406-411.	0.8	15
113	Disruption of the <i>Candida albicans TPS1</i> Gene Encoding Trehalose-6-Phosphate Synthase Impairs Formation of Hyphae and Decreases Infectivity. Journal of Bacteriology, 1998, 180, 3809-3815.	1.0	121
114	The Architecture and Antigenic Composition of the Polysaccharide Capsule. , 0, , 43-54.		8