Michael Schmitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3151539/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Response to extracorporeal photopheresis therapy of patients with steroid-refractory/-resistant GvHD is associated with up-regulation of Th22 cells and Tfh cells. Cytotherapy, 2022, 24, 311-319.	0.7	7
2	<scp>CD33</scp> â€directed immunotherapy with thirdâ€generation chimeric antigen receptor T cells and gemtuzumab ozogamicin in intact and <scp>CD33</scp> â€edited acute myeloid leukemia and hematopoietic stem and progenitor cells. International Journal of Cancer, 2022, 150, 1141-1155.	5.1	13
3	Common T-Cell-Receptor Motifs and Features in Patients with Cytomegalovirus (CMV)-Seronegative End-Stage Renal Disease Receiving a Peptide Vaccination against CMV. International Journal of Molecular Sciences, 2022, 23, 1029.	4.1	1
4	Comparison of FACS and PCR for Detection of BCMA-CAR-T Cells. International Journal of Molecular Sciences, 2022, 23, 903.	4.1	7
5	HDAC Inhibition for Optimized Cellular Immunotherapy of NY-ESO-1-Positive Soft Tissue Sarcoma. Biomedicines, 2022, 10, 373.	3.2	2
6	Humoral Responses and Chronic GVHD Exacerbation after COVID-19 Vaccination Post Allogeneic Stem Cell Transplantation. Vaccines, 2022, 10, 330.	4.4	9
7	Comparison of single copy geneâ€based duplex quantitative PCR and digital droplet PCR for monitoring of expansion of CD19â€directed CAR T cells in treated patients. International Journal of Oncology, 2022, 60, .	3.3	5
8	GLA/DRST real-world outcome analysis of CAR-T cell therapies for large B-cell lymphoma in Germany. Blood, 2022, , .	1.4	51
9	EASIX and Severe Endothelial Complications After CD19-Directed CAR-T Cell Therapy—A Cohort Study. Frontiers in Immunology, 2022, 13, 877477.	4.8	17
10	Intracellular Amplifiers of Reactive Oxygen Species Affecting Mitochondria as Radiosensitizers. Cancers, 2022, 14, 208.	3.7	5
11	First-in-human study of WT1 recombinant protein vaccination in elderly patients with AML in remission: a single-center experience. Cancer Immunology, Immunotherapy, 2022, 71, 2913-2928.	4.2	8
12	Letermovir prophylaxis is effective in preventing cytomegalovirus reactivation after allogeneic hematopoietic cell transplantation: single-center real-world data. Annals of Hematology, 2021, 100, 2087-2093.	1.8	29
13	The impact of allogeneic hematopoietic cell transplantation on the mortality of poor-risk non-Hodgkin lymphoma: an intent-to-transplant analysis. Bone Marrow Transplantation, 2021, 56, 30-37.	2.4	5
14	Comments on "Cost of decentralized <scp>CAR</scp> T cell production in an academic nonâ€profit setting― International Journal of Cancer, 2021, 148, 514-515.	5.1	4
15	Ibrutinib for improved chimeric antigen receptor Tâ€cell production for chronic lymphocytic leukemia patients. International Journal of Cancer, 2021, 148, 419-428.	5.1	42
16	Peptide Vaccination against Cytomegalovirus Induces Specific T Cell Response in Responses in CMV Seronegative End-Stage Renal Disease Patients. Vaccines, 2021, 9, 133.	4.4	8
17	A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature, 2021, 592, 463-468.	27.8	232
18	CD70-specific CAR T cells have potent activity against acute myeloid leukemia without HSC toxicity. Blood, 2021, 138, 318-330.	1.4	98

#	Article	IF	CITATIONS
19	An Endoplasmic Reticulum Specific Proâ€amplifier of Reactive Oxygen Species in Cancer Cells. Angewandte Chemie - International Edition, 2021, 60, 11158-11162.	13.8	34
20	Infection Complications after Lymphodepletion and Dosing of Chimeric Antigen Receptor T (CAR-T) Cell Therapy in Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia or B Cell Non-Hodgkin Lymphoma. Cancers, 2021, 13, 1684.	3.7	17
21	Dual Effects of Cyclooxygenase Inhibitors in Combination With CD19.CAR-T Cell Immunotherapy. Frontiers in Immunology, 2021, 12, 670088.	4.8	10
22	Combining selective inhibitors of nuclear export (SINEs) with chimeric antigen receptor (CAR) TÂcells for CD19‑positive malignancies. Oncology Reports, 2021, 46, .	2.6	12
23	Fatal late-onset CAR T-cell–mediated encephalitis after axicabtagene-ciloleucel in a patient with large B-cell lymphoma. Blood Advances, 2021, 5, 3789-3793.	5.2	10
24	Evaluation of Production Protocols for the Generation of NY-ESO-1-Specific T Cells. Cells, 2021, 10, 152.	4.1	2
25	Sensitivity and Specificity of CD19.CAR-T Cell Detection by Flow Cytometry and PCR. Cells, 2021, 10, 3208.	4.1	13
26	Easix Predicts Severe Cytokine Release Syndrome (CRS) and Immune Effector Cell-Associated Neuro-Toxicity Syndrome (ICANS) in Patients Receiving CD19-Directed Chimeric Antigen Receptor T (CAR-T) Cell Therapy. Blood, 2021, 138, 3861-3861.	1.4	1
27	First-in-Human Study of WT1 Recombinant Protein Vaccination in Elderly Patients with AML in Remission: A Single-Center Experience. Blood, 2021, 138, 1278-1278.	1.4	4
28	Th22 and Tfh Cell Elevation Is Associated with Clinical Response of Photopheresis Therapy in Patients with Steroid-Refractory/ Resistant Graft-Versus-Host Disease (GvHD). Blood, 2021, 138, 1810-1810.	1.4	0
29	A Randomized Open label Phase-II Clinical Trial with or without Infusion of Plasma from Subjects after Convalescence of SARS-CoV-2 Infection in High-Risk Patients with Confirmed Severe SARS-CoV-2 Disease (RECOVER): A structured summary of a study protocol for a randomised controlled trial. Trials, 2020, 21, 828.	1.6	16
30	Assessment of CAR T Cell Frequencies in Axicabtagene Ciloleucel and Tisagenlecleucel Patients Using Duplex Quantitative PCR. Cancers, 2020, 12, 2820.	3.7	13
31	CAR T cells or allogeneic transplantation as standard of care for advanced large B-cell lymphoma: an intent-to-treat comparison. Blood Advances, 2020, 4, 6157-6168.	5.2	26
32	Pre-sensitization of Malignant B Cells Through Venetoclax Significantly Improves the Cytotoxic Efficacy of CD19.CAR-T Cells. Frontiers in Immunology, 2020, 11, 608167.	4.8	23
33	Current Challenges in Providing Good Leukapheresis Products for Manufacturing of CAR-T Cells for Patients with Relapsed/Refractory NHL or ALL. Cells, 2020, 9, 1225.	4.1	40
34	Feasibility and Safety of CD19 Chimeric Antigen Receptor T Cell Treatment for B Cell Lymphoma Relapse after Allogeneic Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2020, 26, 1575-1580.	2.0	20
35	Optimized Assessment of qPCR-Based Vector Copy Numbers as a Safety Parameter for GMP-Grade CAR T Cells and Monitoring of Frequency in Patients. Molecular Therapy - Methods and Clinical Development, 2020, 17, 448-454.	4.1	28
36	B ell maturation antigenâ€specific chimeric antigen receptor T cells for multiple myeloma: Clinical experience and future perspectives. International Journal of Cancer, 2020, 147, 2029-2041.	5.1	10

#	Article	IF	CITATIONS
37	Easix As Prediction Score before CAR-T Cells Vs Allogeneic Hematopoietic Cell Transplantation (alloHCT) for Relapsed/Refractory (r/r) Large B Cell Lymphoma (LBCL). Blood, 2020, 136, 11-12.	1.4	2
38	Antibiotic Therapy and Low Gut Microbiome Diversity Is Associated with Decreased Response and High Toxicity in BCP-ALL and DLBCL Patients after Treatment with CD19. CAR T-Cells. Blood, 2020, 136, 33-34.	1.4	11
39	Donor lymphocyte infusion leads to diversity of specific T cell responses and reduces regulatory T cell frequency in clinical responders. International Journal of Cancer, 2019, 144, 1135-1146.	5.1	12
40	Comparison of IL-2 vs IL-7/IL-15 for the generation of NY-ESO-1-specific T cells. Cancer Immunology, Immunotherapy, 2019, 68, 1195-1209.	4.2	27
41	Treatment of patients with relapsed or refractory CD19+ lymphoid disease with T lymphocytes transduced by RV-SFG.CD19.CD28.4-1BBzeta retroviral vector: a unicentre phase I/II clinical trial protocol. BMJ Open, 2019, 9, e026644.	1.9	27
42	Tumor-Specific Reactive Oxygen Species Accelerators Improve Chimeric Antigen Receptor T Cell Therapy in B Cell Malignancies. International Journal of Molecular Sciences, 2019, 20, 2469.	4.1	14
43	Regulatory T cells sense effector Tâ€cell activation through synchronized JunB expression. FEBS Letters, 2019, 593, 1020-1029.	2.8	12
44	Improvement of in vitro potency assays by a resting step for clinical-grade chimeric antigen receptor engineered T cells. Cytotherapy, 2019, 21, 566-578.	0.7	23
45	Shaping of CD56bri Natural Killer Cells in Patients With Steroid-Refractory/Resistant Acute Graft-vsHost Disease via Extracorporeal Photopheresis. Frontiers in Immunology, 2019, 10, 547.	4.8	16
46	Idelalisib for optimized CD19â€specific chimeric antigen receptor T cells in chronic lymphocytic leukemia patients. International Journal of Cancer, 2019, 145, 1312-1324.	5.1	67
47	Identification of Boronic Acid Derivatives as an Active Form of <i>N</i> -Alkylaminoferrocene-Based Anticancer Prodrugs and Their Radiolabeling with ¹⁸ F. Bioconjugate Chemistry, 2019, 30, 1077-1086.	3.6	21
48	Chimeric Antigen Receptor (CAR) T Cell Therapy in Acute Myeloid Leukemia (AML). Journal of Clinical Medicine, 2019, 8, 200.	2.4	80
49	Optimizing Manufacturing Protocols of Chimeric Antigen Receptor T Cells for Improved Anticancer Immunotherapy. International Journal of Molecular Sciences, 2019, 20, 6223.	4.1	88
50	Blockade of CD95/CD95L Death Signaling Enhances CAR T Cell Persistence and Antitumor Efficacy. Blood, 2019, 134, 3226-3226.	1.4	2
51	Third-Generation CAR T Cells Targeting CD19 Are Associated with an Excellent Safety Profile and Might Improve Persistence of CAR T Cells in Treated Patients. Blood, 2019, 134, 51-51.	1.4	30
52	The Impact of Allogeneic Hematopoietic Cell Transplantation (alloHCT) on the Outcome of Poor-Risk Non-Hodgkin Lymphoma (NHL): A Retrospective Intent-to-Transplant (ITT) Analysis. Blood, 2019, 134, 3328-3328.	1.4	1
53	Cell therapeutic approaches to immunosuppression after clinical kidney transplantation. Pediatric Nephrology, 2018, 33, 199-213.	1.7	13
54	Chimeric antigen receptor transduced T cells: Tuning up for the next generation. International Journal of Cancer, 2018, 142, 1738-1747.	5.1	49

#	Article	IF	CITATIONS
55	Signatures of T and B Cell Development, Functional Responses and PD-1 Upregulation After HCMV Latent Infections and Reactivations in Nod.Rag.Gamma Mice Humanized With Cord Blood CD34+ Cells. Frontiers in Immunology, 2018, 9, 2734.	4.8	23
56	Modulation of B Cells and Homing Marker on NK Cells Through Extracorporeal Photopheresis in Patients With Steroid-Refractory/Resistant Graft-VsHost Disease Without Hampering Anti-viral/Anti-leukemic Effects. Frontiers in Immunology, 2018, 9, 2207.	4.8	21
57	Influence of Retronectin-Mediated T-Cell Activation on Expansion and Phenotype of CD19-Specific Chimeric Antigen Receptor T Cells. Human Gene Therapy, 2018, 29, 1167-1182.	2.7	19
58	Distinct Activities of Glycolytic Enzymes Identify Chronic Lymphocytic Leukemia Patients with a more Aggressive Course and Resistance to Chemo-Immunotherapy. EBioMedicine, 2018, 32, 125-133.	6.1	6
59	Development of Potency Assays for Quality Assessment of an Advanced Therapy Medicinal Product: Mitomycin C-Induced Peripheral Blood Mononuclear Cell (MIC) Product. Blood, 2018, 132, 5689-5689.	1.4	0
60	No Inhibition of Anti-Viral and Anti-Leukemia Effects By Extracorporeal Photopheresis Therapy. Blood, 2018, 132, 3399-3399.	1.4	1
61	Induction of Donor-Specific Immune Tolerance with Clinical MIC Cell Infusion — a Phase I Study (TOL-1). Blood, 2018, 132, 4539-4539.	1.4	0
62	Treg Downregulation Was Associated with Augmentation of T Cell Responses Against Immunogenic Antigens and Clinical Responses in Patients with Hematological Malignancies after Donor Lymphocyte Infusion (DLI). Blood, 2018, 132, 3423-3423.	1.4	0
63	Next-generation dendritic cell-based vaccines for leukemia patients. Immunotherapy, 2017, 9, 173-181.	2.0	9
64	Acute myeloid leukemia with mutated nucleophosmin 1: an immunogenic acute myeloid leukemia subtype and potential candidate for immune checkpoint inhibition. Haematologica, 2017, 102, e499-e501.	3.5	26
65	Peptide vaccination in the presence of adjuvants in patients after hematopoietic stem cell transplantation with CD4+ T cell reconstitution elicits consistent CD8+ T cell responses. Theranostics, 2017, 7, 1705-1718.	10.0	13
66	Differences in Expansion Potential of Naive Chimeric Antigen Receptor T Cells from Healthy Donors and Untreated Chronic Lymphocytic Leukemia Patients. Frontiers in Immunology, 2017, 8, 1956.	4.8	79
67	Definition and characterization of novel HLA-*A02-restricted CD8+ T cell epitopes derived from JCV polyomavirus with clinical relevance. Oncotarget, 2017, 8, 2485-2500.	1.8	7
68	Lenalidomide overcomes the immunosuppression of regulatory CD8+CD28â^' T-cells. Oncotarget, 2017, 8, 98200-98214.	1.8	15
69	Standardization of cryopreserved peripheral blood mononuclear cells through a resting process for clinical immunomonitoring—Development of an algorithm. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 246-258.	1.5	46
70	Immune responses to <scp>WT1</scp> in patients with <scp>AML</scp> or <scp>MDS</scp> after chemotherapy and allogeneic stem cell transplantation. International Journal of Cancer, 2016, 138, 1792-1801.	5.1	42
71	Versican vs versikine: tolerance vs attack. Blood, 2016, 128, 612-613.	1.4	14
72	Chimeric Antigen Receptor T Cell Therapy Targeting CD19-Positive Leukemia and Lymphoma in the Context of Stem Cell Transplantation. Human Gene Therapy, 2016, 27, 758-771.	2.7	34

#	Article	IF	CITATIONS
73	Progress of dendritic cell-based cancer vaccines for patients with hematological malignancies. Expert Opinion on Biological Therapy, 2016, 16, 1113-1123.	3.1	9
74	Indoleamine 2,3-dioxygenase mediates inhibition of virus-specific CD8+ T cell proliferation by human mesenchymal stromal cells. Cytotherapy, 2016, 18, 621-629.	0.7	24
75	Autoantigen-specific immunosuppression with tolerogenic peripheral blood cells prevents relapses in a mouse model of relapsing-remitting multiple sclerosis. Journal of Translational Medicine, 2016, 14, 99.	4.4	8
76	Marked Impact of Different Cytokines on Phenotype and Cytotoxic Activity of CD19-Specific CAR T Cells. Blood, 2016, 128, 3509-3509.	1.4	0
77	Peptide Vaccination Against Cytomegalovirus (CMV) Elicits Immunological and Clinical Responses after Allogeneic Stem Cell Transplantation Even from a CMV Seronegative Donor. Blood, 2016, 128, 2519-2519.	1.4	0
78	Efficacy of single versus boost vaccination against influenza virus in patients with multiple myeloma. Haematologica, 2015, 100, e285-e288.	3.5	43
79	Standardization of Good Manufacturing Practice–compliant production of bone marrow–derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy, 2015, 17, 128-139.	0.7	118
80	T cellâ€based targeted immunotherapies for patients with multiple myeloma. International Journal of Cancer, 2015, 136, 1751-1768.	5.1	10
81	Modulation of lymphocyte subpopulations by extracorporeal photopheresis in patients with acute graft-versus-host disease or graft rejection. Leukemia and Lymphoma, 2015, 56, 671-675.	1.3	19
82	Suppression of cytomegalovirus-specific CD8+T cells by everolimus. Leukemia and Lymphoma, 2014, 55, 1144-1150.	1.3	4
83	Cellular immunotherapy for patients with reactivation of JC and BK polyomaviruses after transplantation. Cytotherapy, 2014, 16, 1325-1335.	0.7	31
84	Conditioning with treosulfan and fludarabine for patients with refractory or relapsed non-Hodgkin lymphoma. Molecular and Clinical Oncology, 2014, 2, 773-782.	1.0	8
85	Immune responses against the mutated region of cytoplasmatic NPM1 might contribute to the favorable clinical outcome of AML patients with NPM1 mutations (NPM1mut). Blood, 2013, 122, 1087-1088.	1.4	61
86	Mutated regions of nucleophosmin 1 elicit both CD4+ and CD8+ T-cell responses in patients with acute myeloid leukemia. Blood, 2012, 120, 1282-1289.	1.4	129
87	Safety and efficacy of everolimus after kidney and hematopoietic stem cell transplantation. Annals of Transplantation, 2012, 17, 52-58.	0.9	9
88	Effect of epitopes derived from the mutated region of cytoplasmatic nucleophosmine 1 (NPM1) on CD4+ and CD8+ T-cell responses in patients with acute myeloid leukemia Journal of Clinical Oncology, 2012, 30, 6567-6567.	1.6	0
89	Mutated Nucleophosmin 1 (NPM1) Is an Immunogenic Target and Patients with NPM1mut Acute Myeloid Leukemia (AML) Showed High Expression of Different Leukemia-Associated Antigens (LAAs). Blood, 2012, 120, 3592-3592.	1.4	0
90	Adoptive transfer and selective reconstitution of streptamerâ€selected cytomegalovirusâ€specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion, 2011, 51, 591-599.	1.6	198

#	Article	IF	CITATIONS
91	The Mutated Region of Cytoplasmatic Nucleophosmine 1 (NPM1) Elicits Both CD4+ and CD8+ T Cell Responses. Blood, 2011, 118, 2569-2569.	1.4	0
92	High-dose RHAMM-R3 peptide vaccination for patients with acute myeloid leukemia, myelodysplastic syndrome and multiple myeloma. Haematologica, 2010, 95, 1191-1197.	3.5	124
93	Streptamer-based selection of WT1-specific CD8+ T cells for specific donor lymphocyte infusions. Experimental Hematology, 2010, 38, 1066-1073.	0.4	22
94	Targeted cellular immunotherapy for leukemia patients. Transfusion and Apheresis Science, 2010, 43, 207-210.	1.0	3
95	Polyomavirus BK-specific CD8+ T cell responses in patients after allogeneic stem cell transplant. Leukemia and Lymphoma, 2010, 51, 1055-1062.	1.3	17
96	Cytomegalovirus vaccination of leukemia and lymphoma patients after allogeneic stem cell transplantation — Validation of a peptide vaccine. Journal of Immunological Methods, 2009, 343, 140-147.	1.4	8
97	Immunological and histochemical analyses of cerebrospinal fluid and peripheral blood from patients with neurological and psychiatric disorders. Acta Neuropsychiatrica, 2009, 21, 51-57.	2.1	4
98	Dasatinib exerts an immunosuppressive effect on CD8+ T cells specific for viral and leukemia antigens. Experimental Hematology, 2008, 36, 1297-1308.	0.4	77
99	Leukemia-Associated Antigens Are Critical for the Proliferation of Acute Myeloid Leukemia Cells: Fig. 1 Clinical Cancer Research, 2008, 14, 7161-7166.	7.0	89
100	RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses. Blood, 2008, 111, 1357-1365.	1.4	202
101	Adoptive Transfer and Consequential Selective Reconstitution of Streptamer-Selected Cytomegalovirus-Specific CD8+ T Cells Leads to Enduring Virus Clearance in Patients after Allogeneic Stem Cell Transplantation. Blood, 2008, 112, 1181-1181.	1.4	4
102	Peptide Vaccination Induces Dynamic Changes in CD4+ and CD8+ T Cell Subsets: Report on the First Peptide Vaccination Trial in Patients with Chronic Lymphocytic Leukemia (CLL). Blood, 2008, 112, 3159-3159.	1.4	2
103	Levofloxacine Prophylaxis Decreases the Incidence of BK Polyoma Virus-Induced Hemorrhagic Cystitis in Patients after Allogeneic Hematopoietic Stem Cell Trans-Plantation. Blood, 2008, 112, 4343-4343.	1.4	4
104	Peptide Vaccine Preparation and Validation with a Bio-Assay. Blood, 2008, 112, 5444-5444.	1.4	0
105	The Leukemia-Associated Antigen PRAME Is Overexpressed in Myeloid Leukemias and Inhibits Cell Differentiation by Blocking the Receptor for Retinoic Acid (RAR)-Signaling in Vitro and Is Therefore a Interesting Candidate for Targeted Immunotherapies Blood, 2008, 112, 1524-1524.	1.4	0
106	Leukemia Associated Antigens: Their Dual Role as Biomarkers and Immunotherapeutic Targets for Acute Myeloid Leukemia. Biomarker Insights, 2007, 2, 117727190700200.	2.5	6
107	Imatinib impairs CD8+ T lymphocytes specifically directed against the leukemia-associated antigen RHAMM/CD168 in vitro. Cancer Immunology, Immunotherapy, 2007, 56, 849-861.	4.2	24
108	Immunological and Clinical Responses in Patients with Acute Myeloid Leukemia (AML), Myelodysplastic Syndrome (MDS), Multiple Myeloma (MM) and Chronic Lymphocytic Leukemia (CLL) after RHAMM-R3 Peptide Vaccination Blood, 2007, 110, 1806-1806.	1.4	9

#	Article	IF	CITATIONS
109	Tyrosine Kinase Inhibitors Dasatinib, Nilotinib and Imatinib Have an Impact on Both CD8+ T Lymphocytes and CD4+CD25+FoxP3+ Regulatory T Cells by Downregulation of the NF-κB Pathway Blood, 2007, 110, 2368-2368.	1.4	1
110	Streptamer Technology for the Assessment of CMVpp65 Specific CD8+ T Cell Frequencies and for the Adoptive T Cell Transfer to Post-Transplant Patients Blood, 2007, 110, 1964-1964.	1.4	0
111	The Receptor for Hyaluronic Acid Mediated Motility (RHAMM): Characterization as an Immunotherapeutical Target in Chronic Lymphocytic Leukemia (CLL) and First Results of RHAMM-Derived Peptide Vaccination Trial Blood, 2007, 110, 2051-2051.	1.4	0
112	Vaccination of B-CLL Patients with Autologous Dendritic Cells Results in Immunological and Clinical Responses Blood, 2007, 110, 2052-2052.	1.4	0
113	Highly Efficient mRNA- and cDNA-Based Transient Gene Delivery into Human Progenitor Cells Blood, 2006, 108, 5471-5471.	1.4	0
114	High Frequency of T Regulatory Cells in Patients with B-Cell Chronic Lymphocytic Leukemia (B-CLL) Is Decreased by Thalidomide and Fludarabine Treatment Blood, 2006, 108, 2108-2108.	1.4	0
115	RHAMM/CD168 Is a Novel Leukemia Associated Antigen with Prognostic Value for Patients with B-Cell Chronic Lymphocytic Leukemia Blood, 2006, 108, 2773-2773.	1.4	0
116	Imatinib Inhibits Both CD4+ T Regulatory Cells and CD8+ T Lymphocytes Specifically Directed Against the Leukemia-Associated Antigen RHAMM/CD168 Blood, 2006, 108, 2201-2201.	1.4	0
117	RHAMM/CD168-R3 Peptide Vaccination of Patients with Acute Myeloid Leukemia (AML), Myelodysplastic Syndrome (MDS) and Multiple Myeloma (MM) Elicits Immunological and Clinical Responses Blood, 2006, 108, 409-409.	1.4	0
118	Expression of Tumor-Associated Antigens (TAAs) in Acute Myeloid Leukemia (AML) Correlated with Specific T Cell Responses and Survival Blood, 2006, 108, 414-414.	1.4	0
119	Cancer vaccines for patients with acute myeloid leukemiadefinition of leukemia-associated antigens and current clinical protocols targeting these antigens. Haematologica, 2006, 91, 1653-61.	3.5	70
120	Identification and characterization of epitopes of the receptor for hyaluronic acid–mediated motility (RHAMM/CD168) recognized by CD8+ T cells of HLA-A2–positive patients with acute myeloid leukemia. Blood, 2005, 106, 938-945.	1.4	105
121	RHAMM/CD168-R3 Peptide Vaccination of HLA-A2+ Patients with Acute Myeloid Leukemia (AML), Myelodysplastic Syndrome (MDS) and Multiple Myeloma (MM) Blood, 2005, 106, 2781-2781.	1.4	7
122	The Receptor for Hyaluronic Acid Mediated Motility (RHAMM/CD168) Is a Potential Target for Immunotherapy of Patients with B-Cell Chronic Lymphocytic Leukemia Blood, 2005, 106, 53-53.	1.4	1
123	Chronic Myeloid Leukemia (CML) Cells Express Tumor Associated Antigens Eliciting Specific CD8+ T Cell Responses Despite of Deficient Expression of Costimulatory Molecules Blood, 2005, 106, 2886-2886.	1.4	0
124	mRNA expression of leukemiaâ€associated antigens in patients with acute myeloid leukemia for the development of specific immunotherapies. International Journal of Cancer, 2004, 108, 704-711.	5.1	118
125	Dendritic Cells (DC) Generated from AML Blasts Express Leukemia Associated Antigens Eliciting Specific Cytotoxic T Cell Responses in the Autologous Host after DC Vaccination Blood, 2004, 104, 1812-1812.	1.4	4
126	Characterization of T Cell Epitopes of the Receptor for Hyaluronic Acid Mediated Motility (RHAMM/CD168) in Acute Myeloid Leukemia Blood, 2004, 104, 2540-2540.	1.4	2

#	Article	IF	CITATIONS
127	Characterization of several leukemiaâ€associated antigens inducing humoral immune responses in acute and chronic myeloid leukemia. International Journal of Cancer, 2003, 106, 224-231.	5.1	84
128	Receptor for hyaluronan acid–mediated motility (RHAMM) is a new immunogenic leukemia-associated antigen in acute and chronic myeloid leukemia. Experimental Hematology, 2002, 30, 1029-1035.	0.4	126
129	Rapid lethality of hosts by interleukin-12 following H-2 compatible allogeneic bone marrow transplantation: Reminiscence of gut-associated acute graft-versus-host reaction. International Journal of Oncology, 2002, 21, 795-801.	3.3	1
130	Development of a cancer vaccine: peptides, proteins, and DNA. Cancer Chemotherapy and Pharmacology, 2000, 46, S77-S82.	2.3	43
131	Cure of intravascular NK/T-cell lymphoma of the central nervous system by allogeneic hematopoietic cell transplantation. Bone Marrow Transplantation, 0, , .	2.4	2