Ulrich Bierbach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/315131/publications.pdf

Version: 2024-02-01

80 papers

2,733 citations

145106 33 h-index 232693 48 g-index

89 all docs 89 docs citations

89 times ranked

2640 citing authors

#	Article	IF	CITATIONS
1	Computational and Experimental Characterization of rDNA and rRNA G-Quadruplexes. Journal of Physical Chemistry B, 2022, 126, 609-619.	1.2	4
2	Evaluation of a Platinum–Acridine Anticancer Agent and Its Liposomal Formulation in an in vivo Model of Lung Adenocarcinoma. ChemMedChem, 2021, 16, 412-419.	1.6	5
3	DNA Adduct Detection after Postâ€Labeling Technique with PCR Amplification (DNAâ€ADAPT–qPCR) Identifies the Preâ€ribosomal RNA Gene as a Direct Target of Platinum–Acridine Anticancer Agents. Chemistry - A European Journal, 2021, 27, 14681-14689.	1.7	4
4	A membrane transporter determines the spectrum of activity of a potent platinum–acridine hybrid anticancer agent. Scientific Reports, 2020, 10, 15201.	1.6	10
5	Discovery of a Chiral DNAâ€Targeted Platinum–Acridine Agent with Potent Enantioselective Anticancer Activity. Angewandte Chemie, 2020, 132, 22149-22154.	1.6	2
6	Discovery of a Chiral DNAâ€Targeted Platinum–Acridine Agent with Potent Enantioselective Anticancer Activity. Angewandte Chemie - International Edition, 2020, 59, 21965-21970.	7.2	9
7	Effects of platinum-based anticancer drugs on the trace element profile of liver and kidney tissue from mice. Journal of Trace Elements in Medicine and Biology, 2019, 54, 62-68.	1.5	12
8	Effect of the nonleaving groups on the cellular uptake and cytotoxicity of platinum-acridine anticancer agents. Inorganica Chimica Acta, 2019, 492, 150-155.	1.2	7
9	Cysteine-Directed Bioconjugation of a Platinum(II)–Acridine Anticancer Agent. Inorganic Chemistry, 2019, 58, 43-46.	1.9	10
10	Platination of cysteine by an epidermal growth factor receptor kinase-targeted hybrid agent. Chemical Communications, 2018, 54, 7479-7482.	2.2	11
11	Largeâ€Pore Functionalized Mesoporous Silica Nanoparticles as Drug Delivery Vector for a Highly Cytotoxic Hybrid Platinum–Acridine Anticancer Agent. Chemistry - A European Journal, 2017, 23, 3386-3397.	1.7	21
12	Human Serum Albumin-Delivered [Au(PEt ₃)] ⁺ Is a Potent Inhibitor of T Cell Proliferation. ACS Medicinal Chemistry Letters, 2017, 8, 572-576.	1.3	13
13	Zirconium tetraazamacrocycle complexes display extraordinary stability and provide a new strategy for zirconium-89-based radiopharmaceutical development. Chemical Science, 2017, 8, 2309-2314.	3.7	87
14	Metal-Containing Pharmacophores in Molecularly Targeted Anticancer Therapies and Diagnostics. European Journal of Inorganic Chemistry, 2017, 2017, 1561-1572.	1.0	15
15	Design and cellular studies of a carbon nanotube-based delivery system for a hybrid platinum-acridine anticancer agent. Journal of Inorganic Biochemistry, 2016, 165, 170-180.	1.5	15
16	Au-ACRAMTU-PEt3 Alters Redox Balance To Inhibit T Cell Proliferation and Function. Journal of Immunology, 2015, 195, 1984-1994.	0.4	5
17	Synthesis, Reactivity, and Biological Activity of Gold(I) Complexes Modified with Thiourea-Functionalized Tyrosine Kinase Inhibitors. Inorganic Chemistry, 2015, 54, 3316-3324.	1.9	28
18	Cellular Recognition and Repair of Monofunctional–Intercalative Platinum–DNA Adducts. Chemical Research in Toxicology, 2015, 28, 2170-2178.	1.7	34

#	Article	IF	Citations
19	Target-selective delivery and activation of platinum-based anticancer agents. Future Medicinal Chemistry, 2015, 7, 911-927.	1.1	15
20	Redesigning the DNAâ€Targeted Chromophore in Platinum–Acridine Anticancer Agents: A Structure–Activity Relationship Study. Chemistry - A European Journal, 2014, 20, 16174-16187.	1.7	43
21	Investigating the cellular fate of a DNA-targeted platinum-based anticancer agent by orthogonal double-click chemistry. Journal of Biological Inorganic Chemistry, 2014, 19, 415-426.	1.1	29
22	Design of Enzymatically Cleavable Prodrugs of a Potent Platinum ontaining Anticancer Agent. Chemistry - A European Journal, 2014, 20, 16164-16173.	1.7	24
23	PT-ACRAMTU, A Platinum–Acridine Anticancer Agent, Lengthens and Aggregates, but does not Stiffen or Soften DNA. Cell Biochemistry and Biophysics, 2013, 67, 1103-1113.	0.9	15
24	The Cell's Nucleolus: an Emerging Target for Chemotherapeutic Intervention. ChemMedChem, 2013, 8, 1441-1449.	1.6	51
25	Using Fluorescent Postâ€Labeling To Probe the Subcellular Localization of DNAâ€₹argeted Platinum Anticancer Agents. Angewandte Chemie - International Edition, 2013, 52, 3350-3354.	7.2	74
26	Design of a platinum–acridine–endoxifen conjugate targeted at hormone-dependent breast cancer. Chemical Communications, 2013, 49, 2415.	2.2	21
27	Analysis of the DNA damage produced by a platinum–acridine antitumor agent and its effects in NCI-H460 lung cancer cells. Metallomics, 2012, 4, 645.	1.0	28
28	Using a Build-and-Click Approach for Producing Structural and Functional Diversity in DNA-Targeted Hybrid Anticancer Agents. Journal of Medicinal Chemistry, 2012, 55, 10198-10203.	2.9	46
29	Comparative Chemogenomics To Examine the Mechanism of Action of DNA-Targeted Platinum-Acridine Anticancer Agents. ACS Chemical Biology, 2012, 7, 1892-1901.	1.6	39
30	Synthesis, Aqueous Reactivity, and Biological Evaluation of Carboxylic Acid Ester-Functionalized Platinum–Acridine Hybrid Anticancer Agents. Journal of Medicinal Chemistry, 2012, 55, 7817-7827.	2.9	43
31	DNA Metalating–Intercalating Hybrid Agents for the Treatment of Chemoresistant Cancers. Chemistry - A European Journal, 2012, 18, 12926-12934.	1.7	73
32	Unusual Reactivity of a Potent Platinum–Acridine Hybrid Antitumor Agent. ACS Medicinal Chemistry Letters, 2011, 2, 687-691.	1.3	21
33	Inhibition of DNA Synthesis by a Platinum–Acridine Hybrid Agent Leads to Potent Cell Kill in Nonsmall Cell Lung Cancer. ACS Medicinal Chemistry Letters, 2011, 2, 870-874.	1.3	44
34	Interactions of a Platinum-Modified Perylene Derivative with the Human Telomeric G-Quadruplex. Journal of Physical Chemistry B, 2011, 115, 13701-13712.	1.2	29
35	Replacement of a Thiourea with an Amidine Group in a Monofunctional Platinum–Acridine Antitumor Agent. Effect on DNA Interactions, DNA Adduct Recognition and Repair. Molecular Pharmaceutics, 2011, 8, 1941-1954.	2.3	33
36	Rates of intercalator-driven platination of DNA determined by a restriction enzyme cleavage inhibition assay. Journal of Biological Inorganic Chemistry, 2011, 16, 373-380.	1.1	25

3

#	Article	IF	CITATIONS
37	Probing Platinumâ^'Adenine-N3 Adduct Formation with DNA Minor-Groove Binding Agents. Chemical Research in Toxicology, 2010, 23, 1148-1150.	1.7	10
38	Synthesis and biological evaluation of platinum–acridine hybrid agents modified with bipyridine non-leaving groups. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3423-3425.	1.0	7
39	Gold(I) Analogues of a Platinumâ^'Acridine Antitumor Agent Are Only Moderately Cytotoxic but Show Potent Activity against Mycobacterium tuberculosis. Journal of Medicinal Chemistry, 2009, 52, 6519-6522.	2.9	44
40	Replacement of a Thiourea-S with an Amidine-NH Donor Group in a Platinumâ^'Acridine Antitumor Compound Reduces the Metal's Reactivity with Cysteine Sulfur. Journal of Medicinal Chemistry, 2009, 52, 3424-3427.	2.9	46
41	Effect of linkage geometry on biological activity in thiourea- and guanidine-substituted acridines and platinum–acridines. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3799-3801.	1.0	17
42	Tuning the DNA Conformational Perturbations Induced by Cytotoxic Platinumâ [^] Acridine Bisintercalators: Effect of Metal Cis/Trans Isomerism and DNA Threading Groups. Journal of Medicinal Chemistry, 2008, 51, 3069-3072.	2.9	18
43	A Non-Cross-Linking Platinumâ^Acridine Agent with Potent Activity in Non-Small-Cell Lung Cancer. Journal of Medicinal Chemistry, 2008, 51, 7574-7580.	2.9	100
44	Adenine-N3 in the DNA Minor Groove - An Emerging Target for Platinum Containing Anticancer Pharmacophores. Anti-Cancer Agents in Medicinal Chemistry, 2007, 7, 125-138.	0.9	36
45	Unexpected Reactivity of the 9-Aminoacridine Chromophore in Guanidylation Reactions. Journal of Organic Chemistry, 2007, 72, 5387-5390.	1.7	12
46	Effect of the Diamine Nonleaving Group in Platinumâ^'Acridinylthiourea Conjugates on DNA Damage and Cytotoxicity. Journal of Medicinal Chemistry, 2007, 50, 2259-2263.	2.9	44
47	Unexpected assembly of a novel triply bridged diiron(II) core by a bidentate Schiff base ligand. Inorganica Chimica Acta, 2007, 360, 2824-2828.	1.2	5
48	Kinetically Favored Platination of Adenine in the G-Rich Human Telomeric Repeat. Journal of the American Chemical Society, 2007, 129, 15764-15765.	6.6	39
49	Synthesis, Biological Activity, and DNA-Damage Profile of Platinum-Threading Intercalator Conjugates Designed To Target Adenine. Journal of Medicinal Chemistry, 2006, 49, 3204-3214.	2.9	41
50	Structure-Activity Relationships Within Di- and Trinuclear Platinum Phase-I Clinical Anticancer Agents., 2006,, 477-496.		8
51	Guanine binding of a cytotoxic platinum–acridin-9-ylthiourea conjugate monitored by 1-D 1H and 2-D [1H,15N] NMR spectroscopy: Hydrolysis is not the rate-determining step. Journal of Inorganic Biochemistry, 2006, 100, 972-979.	1.5	5
52	Characterization of the bisintercalative DNA binding mode of a bifunctional platinum-acridine agent. Nucleic Acids Research, 2005, 33, 5622-5632.	6.5	32
53	Synthesis, structure, and reactivity of monofunctional platinum(II) and palladium(II) complexes containing the sterically hindered ligand 6-(methylpyridin-2-yl)acetate. Journal of Inorganic Biochemistry, 2005, 99, 2013-2023.	1.5	16
54	A non-crosslinking platinum–acridine hybrid agent shows enhanced cytotoxicity compared to clinical BCNU and cisplatin in glioblastoma cells. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 443-446.	1.0	25

#	Article	IF	CITATIONS
55	Platinum-acridinylthiourea conjugates show cell line-specific cytotoxic enhancement in H460 lung carcinoma cells compared to cisplatin. Cancer Chemotherapy and Pharmacology, 2005, 56, 337-343.	1.1	24
56	DNA Minor Groove Adducts Formed by a Platinumâ^Acridine Conjugate Inhibit Association of TATA-Binding Protein with Its Cognate Sequenceâ€. Biochemistry, 2005, 44, 11262-11268.	1.2	22
57	Duplex-Promoted Platination of Adenine-N3 in the Minor Groove of DNA:  Challenging a Longstanding Bioinorganic Paradigm. Journal of the American Chemical Society, 2005, 127, 1160-1169.	6.6	49
58	Solution Structural Study of a DNA Duplex Containing the Guanine-N7 Adduct Formed by a Cytotoxic Platinumâ°'Acridine Hybrid Agent,. Biochemistry, 2005, 44, 6059-6070.	1.2	79
59	Platinum-Intercalator Conjugates: From DNA-Targeted Cisplatin Derivatives to Adenine Binding Complexes as Potential Modulators of Gene Regulation. Current Topics in Medicinal Chemistry, 2004, 4, 1537-1549.	1.0	99
60	Biophysical characterization and molecular modeling of the coordinative-intercalative DNA monoadduct of a platinum-acridinylthiourea agent in a site-specifically modified dodecamer. Journal of Biological Inorganic Chemistry, 2004, 9, 335-344.	1.1	24
61	Structure–activity relationships in platinum–acridinylthiourea conjugates: effect of the thiourea nonleaving group on drug stability, nucleobase affinity, and in vitro cytotoxicity. Journal of Biological Inorganic Chemistry, 2004, 9, 453-461.	1.1	42
62	Unique Base-Step Recognition by a Platinumâ-'Acridinylthiourea Conjugate Leads to a DNA Damage Profile Complementary to That of the Anticancer Drug Cisplatin. Biochemistry, 2004, 43, 8560-8567.	1.2	32
63	Metalâ^'Intercalator-Mediated Self-Association and One-Dimensional Aggregation in the Structure of the Excised Major DNA Adduct of a Platinumâ^'Acridine Agent. Journal of the American Chemical Society, 2004, 126, 4492-4493.	6.6	39
64	Bis(acridinylthiourea)platinum(II) complexes: synthesis, DNA affinity, and biological activity in glioblastoma cells. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 855-858.	1.0	22
65	Unprecedented Monofunctional Metalation of Adenine Nucleobase in Guanine- and Thymine-Containing Dinucleotide Sequences by a Cytotoxic Platinumâ ²² Acridine Hybrid Agent. Journal of the American Chemical Society, 2003, 125, 9629-9637.	6.6	50
66	Unusual intercalation of acridin-9-ylthiourea into the 5'-GA/TC DNA base step from the minor groove: implications for the covalent DNA adduct profile of a novel platinum-intercalator conjugate. Nucleic Acids Research, 2003, 31, 4138-4146.	6.5	43
67	Thermally Inert Metal Ammines as Light-Inducible DNA-Targeted Agents. Synthesis, Photochemistry, and Photobiology of a Prototypical Rhodium(III)â^'Intercalator Conjugate. Inorganic Chemistry, 2002, 41, 7159-7169.	1.9	14
68	Mechanism of action of non-cisplatin type DNA-targeted platinum anticancer agents: DNA interactions of novel acridinylthioureas and their platinum conjugates. Biochemical Pharmacology, 2002, 64, 191-200.	2.0	78
69	Cytotoxic acridinylthiourea and its platinum conjugate produce enzyme-mediated DNA strand breaks. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2953-2955.	1.0	18
70	Design, Synthesis, and Biological Activity of a Novel Non-Cisplatin-type Platinumâ^'Acridine Pharmacophore. Journal of Medicinal Chemistry, 2001, 44, 4492-4496.	2.9	122
71	Modulation of the chemical and biological properties of trans platinum complexes: monofunctional platinum complexes containing one nucleobase as potential antiviral chemotypes. Journal of Biological Inorganic Chemistry, 2000, 5, 575-583.	1.1	33
72	Inversion of the Cis Geometry Requirement for Cytotoxicity in Structurally Novel Platinum(II) Complexes Containing the Bidentate N,O-Donor Pyridin-2-yl-acetate. Inorganic Chemistry, 2000, 39, 1882-1890.	1.9	44

#	Article	IF	CITATIONS
73	Synthesis, Structure, Biological Activity, and DNA Binding of Platinum(II) Complexes of the Typetrans-[PtCl2(NH3)L] (L = Planar Nitrogen Base). Effect of L and Cis/Trans Isomerism on Sequence Specificity and Unwinding Properties Observed in Globally Platinated DNA. Inorganic Chemistry, 1999, 38, 3535-3542.	1.9	103
74	DNA interactions of antitumor trans-[PtCl2(NH3)(quinoline)]. FEBS Journal, 1998, 254, 547-557.	0.2	80
75	Structural and reactivity studies on the ternary system guanine/methionine/trans-[PtCl2(NH3)L] (L=NH3, quinoline): implications for the mechanism of action of nonclassical trans-platinum antitumor complexes. Journal of Biological Inorganic Chemistry, 1998, 3, 570-580.	1.1	26
76	Modification of Platinum(II) Antitumor Complexes with Sulfur Ligands. 2. Reactivity and Nucleotide Binding Properties of Cationic Complexes of the Types [PtCl(diamine)(L)]NO3and [{PtCl(diamine)}2(L-L)](NO3)2(L = Monofunctional Thiourea Derivative; L-L = Bifunctional Thiourea) Tj ETQq0 0 (O rgBT /Ov	erlőčk 10 Tf 5
77	Modification of Platinum(II) Antitumor Complexes with Sulfur Ligands. 1. Synthesis, Structure, and Spectroscopic Properties of Cationic Complexes of the Types [PtCl(diamine)(L)]NO3and [{PtCl(diamine)}2(L-L)](NO3)2(L = Monofunctional Thiourea Derivative; L-L = Bifunctional Thiourea) Tj ETQq1 1 (0.784314	rgB7 /Overloc
78	Modulation of Nucleotide Binding oftransPlatinum(II) Complexes by Planar Ligands. A Combined Proton NMR and Molecular Mechanics Study. Inorganic Chemistry, 1997, 36, 3657-3665.	1.9	46
79	Oxidative Addition of the Dithiobis(formamidinium) Cation to Platinum(II) Chloro Am(m)ine Compounds:Â Studies on Structure, Spectroscopic Properties, Reactivity, and Cytotoxicity of a New Class of Platinum(IV) Complexes ExhibitingS-Thiourea Coordination. Inorganic Chemistry, 1996, 35, 4865-4872.	1.9	38
80	Fel3SC(NMe2)2, a Neutral Thiourea Complex of Iron(III) lodide. Angewandte Chemie International Edition in English, 1989, 28, 776-777.	4.4	10