
Sylvaine You

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3151236/publications.pdf Version: 2024-02-01

SYLVAINE YOU

#	Article	IF	CITATIONS
1	Personalized Immunotherapies for Type 1 Diabetes: Who, What, When, and How?. Journal of Personalized Medicine, 2022, 12, 542.	1.1	10
2	Peptidylarginine Deiminase Inhibition Prevents Diabetes Development in NOD Mice. Diabetes, 2021, 70, 516-528.	0.3	25
3	The SAgA of Antigen-Specific Immunotherapy for Type 1 Diabetes. Diabetes, 2021, 70, 1247-1249.	0.3	2
4	Oral Fc-Coupled Preproinsulin Achieves Systemic and Thymic Delivery Through the Neonatal Fc Receptor and Partially Delays Autoimmune Diabetes. Frontiers in Immunology, 2021, 12, 616215.	2.2	4
5	CD8+ T cells variably recognize native versus citrullinated GRP78 epitopes in type 1 diabetes. Diabetes, 2021, 70, db210259.	0.3	11
6	Regulation of T-Cell Immune Responses by Pro-Resolving Lipid Mediators. Frontiers in Immunology, 2021, 12, 768133.	2.2	21
7	De novo germline mutation in the dual specificity phosphatase 10 gene accelerates autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	3
8	Peptides Derived From Insulin Granule Proteins Are Targeted by CD8+ T Cells Across MHC Class I Restrictions in Humans and NOD Mice. Diabetes, 2020, 69, 2678-2690.	0.3	34
9	MicroRNA-146a-deficient mice develop immune complex glomerulonephritis. Scientific Reports, 2019, 9, 15597.	1.6	10
10	InÂVitro Expansion of Anti-viral T Cells from Cord Blood by Accelerated Co-cultured Dendritic Cells. Molecular Therapy - Methods and Clinical Development, 2019, 13, 112-120.	1.8	2
11	Oral histone deacetylase inhibitor synergises with T cell targeted immunotherapy to preserve beta cell metabolic function and induce stable remission of new-onset autoimmune diabetes in NOD mice. Diabetologia, 2018, 61, 389-398.	2.9	16
12	Revisiting the phenotypic and genetic profiling of anergic T cells mediating long-term transplant tolerance. Current Opinion in Organ Transplantation, 2018, 23, 83-89.	0.8	4
13	Differential Impact of T-bet and IFNÎ ³ on Pancreatic Islet Allograft Rejection. Transplantation, 2018, 102, 1496-1504.	0.5	7
14	A selective CD28 antagonist and rapamycin synergise to protect against spontaneous autoimmune diabetes in NOD mice. Diabetologia, 2018, 61, 1811-1816.	2.9	7
15	Conventional and Neo-antigenic Peptides Presented by β Cells Are Targeted by Circulating NaÃ⁻ve CD8+ T Cells in Type 1 Diabetic and Healthy Donors. Cell Metabolism, 2018, 28, 946-960.e6.	7.2	177
16	The Concerted Action of Multiple Mechanisms to Induce and Sustain Transplant Tolerance. OBM Transplantation, 2018, 2, 1-1.	0.2	3
17	The Induction and Maintenance of Transplant Tolerance Engages Both Regulatory and Anergic CD4+ T cells. Frontiers in Immunology, 2017, 8, 218.	2.2	37
18	Control of Immune Response to Allogeneic Embryonic Stem Cells by CD3 Antibody–Mediated Operational Tolerance Induction. American Journal of Transplantation, 2016, 16, 454-467.	2.6	18

Sylvaine You

#	Article	IF	CITATIONS
19	Regulatory mechanisms of immune tolerance in type 1 diabetes and their failures. Journal of Autoimmunity, 2016, 71, 69-77.	3.0	34
20	Autoimmune Diabetes: An Overview of Experimental Models and Novel Therapeutics. Methods in Molecular Biology, 2016, 1371, 117-142.	0.4	21
21	TGFβ-dependent expression of PD-1 and PD-L1 controls CD8+ T cell anergy in transplant tolerance. ELife, 2016, 5, e08133.	2.8	105
22	Differential Sensitivity of Regulatory and Effector T Cells to Cell Death: A Prerequisite for Transplant Tolerance. Frontiers in Immunology, 2015, 6, 242.	2.2	6
23	The Need for Immune Modulation Despite Regenerative Medicine. , 2014, , 935-944.		0
24	Combining Autologous Dendritic Cell Therapy with CD3 Antibodies Promotes Regulatory T Cells and Permanent Islet Allograft Acceptance. Journal of Immunology, 2014, 193, 4696-4703.	0.4	30
25	Intragraft Mechanisms Associated With the Immunosuppressive Versus the Tolerogenic Effect of CD3 Antibodies in a Mouse Model of Islet Allografts. Transplantation Proceedings, 2013, 45, 1895-1898.	0.3	19
26	Delayed Anti D3 Therapy Results in Depletion of Alloreactive T Cells and the Dominance of Foxp3 + CD4 + Graft Infiltrating Cells. American Journal of Transplantation, 2013, 13, 1655-1664.	2.6	36
27	Therapeutic Use of a Selective S1P1 Receptor Modulator Ponesimod in Autoimmune Diabetes. PLoS ONE, 2013, 8, e77296.	1.1	20
28	Tolerance Induction Versus Immunosuppression in Organ Transplant by CD3 Antibodies: A Matter of Timing. Transplantation, 2012, 94, 613.	0.5	0
29	Induction of Allograft Tolerance by Monoclonal CD3 Antibodies: A Matter of Timing. American Journal of Transplantation, 2012, 12, 2909-2919.	2.6	57
30	Human CD3 Transgenic Mice: Preclinical Testing of Antibodies Promoting Immune Tolerance. Science Translational Medicine, 2011, 3, 68ra10.	5.8	41
31	Engagement of TLR2 Reverses the Suppressor Function of Conjunctiva CD4+CD25+Regulatory T Cells and Promotes Herpes Simplex Virus Epitope-Specific CD4+CD25â^²Effector T Cell Responses. , 2011, 52, 3321.		15
32	New generation CD3 monoclonal antibodies: are we ready to have them back in clinical transplantation?. Current Opinion in Organ Transplantation, 2010, 15, 720-724.	0.8	6
33	99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: Immune therapies of type 1 diabetes: new opportunities based on the hygiene hypothesis. Clinical and Experimental Immunology, 2010, 160, 106-112.	1.1	20
34	IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. Journal of Experimental Medicine, 2010, 207, 1871-1878.	4.2	368
35	A genital tract peptide epitope vaccine targeting TLR-2 efficiently induces local and systemic CD8+ T cells and protects against herpes simplex virus type 2 challenge. Mucosal Immunology, 2009, 2, 129-143.	2.7	105
36	CD3-specific antibodies to restore tolerance in autoimmune diabetes. Drug Discovery Today: Therapeutic Strategies, 2009, 6, 33-38.	0.5	3

Sylvaine You

#	Article	IF	CITATIONS
37	Key Role of the GITR/GITRLigand Pathway in the Development of Murine Autoimmune Diabetes: A Potential Therapeutic Target. PLoS ONE, 2009, 4, e7848.	1.1	35
38	Immunoregulatory Pathways Controlling Progression of Autoimmunity in NOD Mice. Annals of the New York Academy of Sciences, 2008, 1150, 300-310.	1.8	38
39	Chapter 2 CD3 Antibodies as Unique Tools to Restore Self-Tolerance in Established Autoimmunity. Advances in Immunology, 2008, 100, 13-37.	1.1	21
40	Adaptive TGF-beta-dependent regulatory T cells control autoimmune diabetes and are a privileged target of anti-CD3 antibody treatment. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6335-6340.	3.3	160
41	Functional Foxp3 + CD4 + CD25 (Bright+) "Natural―Regulatory T Cells Are Abundant in Rabbit Conjunctiva and Suppress Virus-Specific CD4 + and CD8 + Effector T Cells during Ocular Herpes Infection. Journal of Virology, 2007, 81, 7647-7661.	1.5	41
42	Tryptophan catabolism generates autoimmune-preventive regulatory T cells. Transplant Immunology, 2006, 17, 58-60.	0.6	97
43	Transforming growth factorâ€Î² and Tâ€cellâ€mediated immunoregulation in the control of autoimmune diabetes. Immunological Reviews, 2006, 212, 185-202.	2.8	62
44	The Combined Effects of Tryptophan Starvation and Tryptophan Catabolites Down-Regulate T Cell Receptor ζ-Chain and Induce a Regulatory Phenotype in Naive T Cells. Journal of Immunology, 2006, 176, 6752-6761.	0.4	943
45	Proinsulin: a unique autoantigen triggering autoimmune diabetes. Journal of Clinical Investigation, 2006, 116, 3108-3110.	3.9	20
46	Autoimmune Diabetes Onset Results From Qualitative Rather Than Quantitative Age-Dependent Changes in Pathogenic T-Cells. Diabetes, 2005, 54, 1415-1422.	0.3	197
47	Unique role of CD4+CD62L+ regulatory T cells in the control of autoimmune diabetes in T cell receptor transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14580-14585.	3.3	87
48	Presence of Diabetes-Inhibiting, Glutamic Acid Decarboxylase-Specific, IL-10-Dependent, Regulatory T Cells in Naive Nonobese Diabetic Mice. Journal of Immunology, 2004, 173, 6777-6785.	0.4	38
49	Detection and Characterization of T Cells Specific for BDC2.5 T Cell-Stimulating Peptides. Journal of Immunology, 2003, 170, 4011-4020.	0.4	49
50	Diversity of regulatory CD4+T cells controlling distinct organ-specific autoimmune diseases. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15806-15811.	3.3	103
51	Feeding NOD mice with pig splenocytes induces transferable mechanisms that modulate cellular and humoral xenogeneic reactions against pig spleen or islet cells. Clinical and Experimental Immunology, 2002, 127, 412-422.	1.1	1
52	Co-incubation of pig islet cells with spleen cells from non-obese diabetic mice causes decreased insulin release by non-T-cell- and T-cell-mediated mechanisms. Clinical and Experimental Immunology, 2001, 125, 25-31.	1.1	3
53	Spleen cells of non-obese diabetic mice fed with pig splenocytes display modified proliferation and reduced aggressiveness in vitro against pig islet cells. Diabetologia, 1998, 41, 955-962.	2.9	5
54	IN VITRO XENORECOGNITION OF ADULT PIG PANCREATIC ISLET CELLS BY SPLENOCYTES FROM NONOBESE DIABETIC OR NON-DIABETES-PRONE MICE1. Transplantation, 1998, 66, 633-638.	0.5	13