Rong Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3151075/publications.pdf Version: 2024-02-01

RONGLIANC

#	Article	IF	CITATIONS
1	Improved stability and skin penetration through glycethosomes loaded with glycyrrhetinic acid. International Journal of Cosmetic Science, 2022, 44, 249-261.	1.2	7
2	Enzymatic degradation and bioaccessibility of protein encapsulated β-carotene nano-emulsions during in vitro gastro-intestinal digestion. Food Hydrocolloids, 2020, 100, 105177.	5.6	57
3	Quaternized Chitosan Modified Nanostructure Lipid Carriers for Topical Delivery of Coenzyme Q10. Nano LIFE, 2020, 10, 2040013.	0.6	2
4	Remodeling of β-Carotene-Encapsulated Protein-Stabilized Nanoparticles during Gastrointestinal Digestion <i>In Vitro</i> and in Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 15468-15477.	2.4	15
5	Effect of the co-existing and excipient oil on the bioaccessibility of β-carotene loaded oil-free nanoparticles. Food Hydrocolloids, 2020, 106, 105847.	5.6	26
6	Self-Assembled Micelles Based on OSA-Modified Starches for Enhancing Solubility of β-Carotene: Effect of Starch Macromolecular Architecture. Journal of Agricultural and Food Chemistry, 2019, 67, 6614-6624.	2.4	46
7	Tunable Synthesis of Indolo[3,2- <i>c</i>]quinolines or 3-(2-Aminophenyl)quinolines via Aerobic/Anaerobic Dimerization of 2-Alkynylanilines. Organic Letters, 2019, 21, 4996-5001.	2.4	27
8	Protective approaches and mechanisms of microencapsulation to the survival of probiotic bacteria during processing, storage and gastrointestinal digestion: A review. Critical Reviews in Food Science and Nutrition, 2019, 59, 2863-2878.	5.4	102
9	Physical properties and biological fate of OSA-modified-starch-stabilized emulsions containing β-carotene: Effect of calcium and pH. Food Hydrocolloids, 2018, 77, 549-556.	5.6	26
10	Interactions between octenyl-succinic-anhydride-modified starches and calcium in oil-in-water emulsions. Food Hydrocolloids, 2018, 77, 30-39.	5.6	36
11	Preparation and properties of multifunctional sinapic acid corn bran arabinoxylan esters. International Journal of Biological Macromolecules, 2018, 106, 1279-1287.	3.6	11
12	Characterizations on the Stability and Release Properties of β-ionone Loaded Thermosensitive Liposomes (TSLs). Journal of Agricultural and Food Chemistry, 2018, 66, 8336-8345.	2.4	15
13	Effect of degree of octenyl succinic anhydride (OSA) substitution on the digestion of emulsions and the bioaccessibility of Î ² -carotene in OSA-modified-starch-stabilized-emulsions. Food Hydrocolloids, 2018, 84, 303-312.	5.6	89
14	Anticancer effects of plant derived Anacardic acid on human breast cancer MDA-MB-231 cells. American Journal of Translational Research (discontinued), 2018, 10, 2424-2434.	0.0	13
15	Effects of calcium on lipid digestion in nanoemulsions stabilized by modified starch: Implications for bioaccessibility of β -carotene. Food Hydrocolloids, 2017, 73, 184-193.	5.6	56
16	Niosomes Consisting of Tween-60 and Cholesterol Improve the Chemical Stability and Antioxidant Activity of (â^)-Epigallocatechin Gallate under Intestinal Tract Conditions. Journal of Agricultural and Food Chemistry, 2016, 64, 9180-9188.	2.4	46
17	Preparation of Pickering emulsions with short, medium and long chain triacylglycerols stabilized by starch nanocrystals and their in vitro digestion properties. RSC Advances, 2016, 6, 99496-99508.	1.7	76
18	Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation. European Food Research and Technology, 2015, 240, 847-852.	1.6	7

Rong Liang

#	Article	IF	CITATIONS
19	The effect of high moisture heat-acid treatment on the structure and digestion property of normal maize starch. Food Chemistry, 2014, 159, 222-229.	4.2	69
20	Stability and Bioaccessibility of β-Carotene in Nanoemulsions Stabilized by Modified Starches. Journal of Agricultural and Food Chemistry, 2013, 61, 1249-1257.	2.4	205
21	Physical and Antimicrobial Properties of Peppermint Oil Nanoemulsions. Journal of Agricultural and Food Chemistry, 2012, 60, 7548-7555.	2.4	286