
Tomohiro Aoki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3151049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macrophage-Derived Matrix Metalloproteinase-2 and -9 Promote the Progression of Cerebral Aneurysms in Rats. Stroke, 2007, 38, 162-169.	1.0	269
2	Prostaglandins and chronic inflammation. Trends in Pharmacological Sciences, 2012, 33, 304-311.	4.0	241
3	NF-κB Is a Key Mediator of Cerebral Aneurysm Formation. Circulation, 2007, 116, 2830-2840.	1.6	218
4	Impact of Monocyte Chemoattractant Protein-1 Deficiency on Cerebral Aneurysm Formation. Stroke, 2009, 40, 942-951.	1.0	200
5	Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms. Neurosurgical Focus, 2019, 47, E21.	1.0	157
6	Simvastatin Suppresses the Progression of Experimentally Induced Cerebral Aneurysms in Rats. Stroke, 2008, 39, 1276-1285.	1.0	131
7	Impaired Progression of Cerebral Aneurysms in Interleukin-1β–Deficient Mice. Stroke, 2006, 37, 900-905.	1.0	126
8	Prostaglandin E ₂ –EP2–NF-l̂ºB signaling in macrophages as a potential therapeutic target for intracranial aneurysms. Science Signaling, 2017, 10, .	1.6	121
9	Role of TIMP-1 and TIMP-2 in the Progression of Cerebral Aneurysms. Stroke, 2007, 38, 2337-2345.	1.0	109
10	Definition of Prostaglandin E2–EP2 Signals in the Colon Tumor Microenvironment That Amplify Inflammation and Tumor Growth. Cancer Research, 2015, 75, 2822-2832.	0.4	104
11	Reduced Collagen Biosynthesis Is the Hallmark of Cerebral Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1080-1086.	1.1	103
12	Cathepsin B, K, and S Are Expressed in Cerebral Aneurysms and Promote the Progression of Cerebral Aneurysms. Stroke, 2008, 39, 2603-2610.	1.0	96
13	T cell–intrinsic prostaglandin E2-EP2/EP4 signaling is critical in pathogenic TH17 cell–driven inflammation. Journal of Allergy and Clinical Immunology, 2019, 143, 631-643.	1.5	81
14	PITAVASTATIN SUPPRESSES FORMATION AND PROGRESSION OF CEREBRAL ANEURYSMS THROUGH INHIBITION OF THE NUCLEAR FACTOR κB PATHWAY. Neurosurgery, 2009, 64, 357-366.	0.6	79
15	Critical role of TNF-alpha-TNFR1 signaling in intracranial aneurysm formation. Acta Neuropathologica Communications, 2014, 2, 34.	2.4	76
16	Reactive oxygen species modulate growth of cerebral aneurysms: a study using the free radical scavenger edaravone and p47phoxâ^'/â^' mice. Laboratory Investigation, 2009, 89, 730-741.	1.7	64
17	The Development and the Use of Experimental Animal Models to Study the Underlying Mechanisms of CA Formation. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-10.	3.0	63
18	Statin Use and Risk of Cerebral Aneurysm Rupture: A Hospital-based Case–control Study in Japan. Journal of Stroke and Cerebrovascular Diseases, 2014, 23, 343-348	0.7	58

Томоніго Аокі

#	Article	IF	CITATIONS
19	Contribution of Mast Cells to Cerebral Aneurysm Formation. Current Neurovascular Research, 2010, 7, 113-124.	0.4	55
20	Intracranial Aneurysm as a Macrophage-mediated Inflammatory Disease. Neurologia Medico-Chirurgica, 2019, 59, 126-132.	1.0	47
21	Targeting chronic inflammation in cerebral aneurysms: focusing on NF-κB as a putative target of medical therapy. Expert Opinion on Therapeutic Targets, 2010, 14, 265-273.	1.5	46
22	Sustained expression of MCP-1 by low wall shear stress loading concomitant with turbulent flow on endothelial cells of intracranial aneurysm. Acta Neuropathologica Communications, 2016, 4, 48.	2.4	46
23	Prostaglandin E2 stimulates adaptive IL-22 production and promotes allergic contact dermatitis. Journal of Allergy and Clinical Immunology, 2018, 141, 152-162.	1.5	43
24	Regression of Intracranial Aneurysms by Simultaneous Inhibition of Nuclear Factor-κB and Ets With Chimeric Decoy Oligodeoxynucleotide Treatment. Neurosurgery, 2012, 70, 1534-1543.	0.6	37
25	Two Diverse Hemodynamic Forces, a Mechanical Stretch and a High Wall Shear Stress, Determine Intracranial Aneurysm Formation. Translational Stroke Research, 2020, 11, 80-92.	2.3	35
26	A sphingosineâ€1â€phosphate receptor type 1 agonist, ASP4058, suppresses intracranial aneurysm through promoting endothelial integrity and blocking macrophage transmigration. British Journal of Pharmacology, 2017, 174, 2085-2101.	2.7	33
27	KRAS G12D or G12V Mutation in Human Brain Arteriovenous Malformations. World Neurosurgery, 2019, 126, e1365-e1373.	0.7	33
28	Toll-like receptor 4 expression during cerebral aneurysm formation. Journal of Neurosurgery, 2010, 113, 851-858.	0.9	29
29	Molecular Basis for Intracranial Aneurysm Formation. Acta Neurochirurgica Supplementum, 2015, 120, 13-15.	0.5	29
30	T cell function is dispensable for intracranial aneurysm formation and progression. PLoS ONE, 2017, 12, e0175421.	1.1	28
31	Nifedipine Inhibits the Progression of An Experimentally Induced Cerebral Aneurysm in Rats with Associated Down-Regulation of NF-Kappa B Transcriptional Activity. Current Neurovascular Research, 2008, 5, 37-45.	0.4	27
32	Macrophage Imaging of Cerebral Aneurysms with Ferumoxytol: an Exploratory Study in an Animal Model and in Patients. Journal of Stroke and Cerebrovascular Diseases, 2017, 26, 2055-2064.	0.7	25
33	Gene expression profile of the intima and media of experimentally induced cerebral aneurysms in rats by laser-microdissection and microarray techniques. International Journal of Molecular Medicine, 2008, 22, 595-603.	1.8	25
34	Involvement of neutrophils in machineries underlying the rupture of intracranial aneurysms in rats. Scientific Reports, 2020, 10, 20004.	1.6	24
35	Prostaglandin E2-EP4 signaling persistently amplifies CD40-mediated induction of IL-23 p19 expression through canonical and non-canonical NF-κB pathways. Cellular and Molecular Immunology, 2016, 13, 240-250.	4.8	22
36	Role of angiotensin II type 1 receptor in cerebral aneurysm formation in rats. International Journal of Molecular Medicine, 2009, 24, 353-9.	1.8	20

Томоніго Аокі

#	Article	IF	CITATIONS
37	Hemodynamic Force as a Potential Regulator of Inflammation-Mediated Focal Growth of Saccular Aneurysms in a Rat Model. Journal of Neuropathology and Experimental Neurology, 2021, 80, 79-88.	0.9	19
38	Preemptive Medicine for Cerebral Aneurysms. Neurologia Medico-Chirurgica, 2016, 56, 552-568.	1.0	18
39	RNA sequencing analysis revealed the induction of CCL3 expression in human intracranial aneurysms. Scientific Reports, 2019, 9, 10387.	1.6	18
40	Imidapril Inhibits Cerebral Aneurysm Formation in an Angiotensin-Converting Enzyme–Independent and Matrix Metalloproteinase-9–Dependent Manner. Neurosurgery, 2012, 70, 722-730.	0.6	17
41	Hemodynamic and Histopathological Changes in the Early Phase of the Development of an Intracranial Aneurysm. Neurologia Medico-Chirurgica, 2020, 60, 319-328.	1.0	17
42	Molecular basis for the development of intracranial aneurysm. Expert Review of Neurotherapeutics, 2010, 10, 173-187.	1.4	15
43	Gene Expression during the Development of Experimentally Induced Cerebral Aneurysms. Journal of Vascular Research, 2008, 45, 343-349.	0.6	14
44	Macrophage Imaging of Intracranial Aneurysms. Neurologia Medico-Chirurgica, 2019, 59, 257-263.	1.0	14
45	Vasa vasorum formation is associated with rupture of intracranial aneurysms. Journal of Neurosurgery, 2020, 133, 789-799.	0.9	14
46	Rat Model of Intracranial Aneurysm: Variations, Usefulness, and Limitations of theÂHashimoto Model. Acta Neurochirurgica Supplementum, 2020, 127, 35-41.	0.5	12
47	Dedifferentiation of smooth muscle cells in intracranial aneurysms and its potential contribution to the pathogenesis. Scientific Reports, 2020, 10, 8330.	1.6	12
48	High-Fat Diet Intake Promotes the Enlargement and Degenerative Changes in the Media of Intracranial Aneurysms in Rats. Journal of Neuropathology and Experimental Neurology, 2019, 78, 798-807.	0.9	11
49	Eicosapentaenoic acid prevents the progression of intracranial aneurysms in rats. Journal of Neuroinflammation, 2020, 17, 129.	3.1	9
50	Candidate drugs for preventive treatment of unruptured intracranial aneurysms: A cross-sectional study. PLoS ONE, 2021, 16, e0246865.	1.1	9
51	The Bilateral Ovariectomy in a Female Animal Exacerbates the Pathogenesis of an Intracranial Aneurysm. Brain Sciences, 2020, 10, 335.	1.1	8
52	Induction of CCN1 in Growing Saccular Aneurysms: A Potential Marker Predicting Unstable Lesions. Journal of Neuropathology and Experimental Neurology, 2021, 80, 695-704.	0.9	8
53	The efficacy of apolipoprotein E deficiency in cerebral aneurysm formation. International Journal of Molecular Medicine, 2008, 21, 453-9.	1.8	8
54	Real-time Imaging of an Experimental Intracranial Aneurysm in Rats. Neurologia Medico-Chirurgica, 2019, 59, 19-26.	1.0	7

Томоніго Аокі

#	Article	IF	CITATIONS
55	Targeting macrophages to treat intracranial aneurysm. Oncotarget, 2017, 8, 104704-104705.	0.8	6
56	Inflammation mediates the pathogenesis of cerebral aneurysm and becomes therapeutic target. Neuroimmunology and Neuroinflammation, 2015, 2, 86.	1.4	6
57	Molecular mechanism of cerebral aneurysm formation focusing on NF-Î ^o B as a key mediator of inflammation. Journal of Biorheology, 2010, 24, 16-21.	0.2	5
58	Chronic inflammation in intracranial aneurysm formation. Inflammation and Regeneration, 2013, 33, 283-287.	1.5	2
59	The cerebral artery in cynomolgus monkeys (<i>Macaca fascicularis</i>). Experimental Animals, 2022, 71, 391-398.	0.7	2
60	The bifurcation angle is associated with the progression of saccular aneurysms. Scientific Reports, 2022, 12, 7409.	1.6	1
61	Production and degeneration of extracellular matrix regulates cerebral aneurysm growth and are potential targets for aneurysm treatment. Nosotchu, 2010, 32, 538-543.	0.0	0
62	Embarking on New Era of a Treatment and a Diagnosis of an Intracranial Aneurysm. Japanese Journal of Neurosurgery, 2018, 27, 882-888.	0.0	0
63	An S1P1 agonist, ASP4058, as a potential therapeutic candidate for intracranial aneurysm treatment. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-3-30.	0.0	0
64	Prostaglandin E2-EP2-NF-kB signaling in macrophages mediates chronic inflammation during intracranial aneurysm formation and becomes a potential therapeutic target. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-4-2.	0.0	0
65	Molecular events regulating the pathogenesis of intracranial aneurysms: Special insight on hemodynamics and chronic inflammation. Journal of Biorheology, 2019, 33, 28-31.	0.2	0
66	Future Perspectives of Intervention for Cerebral Aneurysms. Japanese Journal of Neurosurgery, 2020, 29, 101-108.	0.0	0
67	Pathophysiology and Natural History of Intracranial Aneurysms. Japanese Journal of Neurosurgery, 2022, 31, 74-80.	0.0	0
68	Candidate drugs for preventive treatment of unruptured intracranial aneurysms. Tenri Medical Bulletin, 2022, 25, 78-79.	0.1	0