
Deven R See

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3150644/publications.pdf Version: 2024-02-01

DEVEN P SEE

#	Article	IF	CITATIONS
1	Identification and Mapping of Quantitative Trait Loci Associated with Stripe Rust Resistance in Spring Club Wheat Cultivar JD. Plant Disease, 2022, , .	1.4	1
2	Population structure and genetic diversity of U.S. wheat varieties. Plant Genome, 2022, 15, e20196.	2.8	3
3	Identification of Secreted Protein Gene-Based SNP Markers Associated with Virulence Phenotypes of Puccinia striiformis f. sp. tritici, the Wheat Stripe Rust Pathogen. International Journal of Molecular Sciences, 2022, 23, 4114.	4.1	3
4	Genotyping <i>Puccinia striiformis</i> f. sp. <i>tritici</i> Isolates with SSR and SP-SNP Markers Reveals Dynamics of the Wheat Stripe Rust Pathogen in the United States from 1968 to 2009 and Identifies Avirulence-Associated Markers. Phytopathology, 2021, 111, 1828-1839.	2.2	9
5	QTL Analysis of Adult Plant Resistance to Stripe Rust in a Winter Wheat Recombinant Inbred Population. Plants, 2021, 10, 572.	3.5	8
6	Genotyping by Multiplexed Sequencing (GMS) protocol in Barley. Euphytica, 2021, 217, 1.	1.2	1
7	Population Diversity, Dynamics, and Differentiation of Wheat Stripe Rust Pathogen Puccinia striiformis f. sp. tritici From 2010 to 2017 and Comparison With 1968 to 2009 in the United States. Frontiers in Microbiology, 2021, 12, 696835.	3.5	7
8	Genome-wide association mapping of <i>Pyrenophora teres</i> f. <i>maculata</i> and <i>Pyrenophora teres</i> f. <i>teres</i> resistance loci utilizing natural Turkish wild and landrace barley populations. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	3
9	Registration of â€~Castella' soft white winter club wheat. Journal of Plant Registrations, 2021, 15, 504-514.	0.5	2
10	Molecular Characterization of Wheat Stripe Rust Pathogen (Puccinia striiformis f. sp. tritici) Collections from Nine Countries. International Journal of Molecular Sciences, 2021, 22, 9457.	4.1	13
11	Registration of â€~ARS Crescent' soft white winter club wheat. Journal of Plant Registrations, 2021, 15, 515-526.	0.5	2
12	Molecular Characterization of International Collections of the Wheat Stripe Rust Pathogen <i>Puccinia striiformis</i> f. sp. <i>tritici</i> Reveals High Diversity and Intercontinental Migration. Phytopathology, 2020, 110, 933-942.	2.2	17
13	Mapping Quantitative Trait Loci for High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 197734 Using a Doubled Haploid Population and Genotyping by Multiplexed Sequencing. Frontiers in Plant Science, 2020, 11, 596962.	3.6	5
14	Genome-Wide Association Study and Gene Specific Markers Identified 51 Genes or QTL for Resistance to Stripe Rust in U.S. Winter Wheat Cultivars and Breeding Lines. Frontiers in Plant Science, 2020, 11, 998.	3.6	33
15	Genetic diversity in historical and modern wheat varieties of the U.S. Pacific Northwest. Crop Science, 2020, 60, 3175-3190.	1.8	11
16	ldentification of Stripe Rust Resistance Loci in U.S. Spring Wheat Cultivars and Breeding Lines Using Genome-Wide Association Mapping and <i>Yr</i> Gene Markers. Plant Disease, 2020, 104, 2181-2192.	1.4	34
17	Exome sequencing of bulked segregants identified a novel TaMKK3-A allele linked to the wheat ERA8 ABA-hypersensitive germination phenotype. Theoretical and Applied Genetics, 2020, 133, 719-736.	3.6	17
18	Ethyl-methanesulfonate mutagenesis generated diverse isolates of Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen. World Journal of Microbiology and Biotechnology, 2019, 35, 28.	3.6	13

DEVEN R SEE

#	Article	IF	CITATIONS
19	Introgression of a Novel Ug99-Effective Stem Rust Resistance Gene into Wheat and Development of <i>Dasypyrum villosum</i> Chromosome-Specific Markers via Genotyping-by-Sequencing (GBS). Plant Disease, 2019, 103, 1068-1074.	1.4	7
20	Whole-Genome Mapping of Stripe Rust Resistance Quantitative Trait Loci and Race Specificity Related to Resistance Reduction in Winter Wheat Cultivar Eltan. Phytopathology, 2019, 109, 1226-1235.	2.2	20
21	Characterization of Novel Gene <i>Yr79</i> and Four Additional Quantitative Trait Loci for All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat Pl 182103. Phytopathology, 2018, 108, 737-747.	2.2	123
22	Inheritance of Virulence, Construction of a Linkage Map, and Mapping Dominant Virulence Genes in <i>Puccinia striiformis</i> f. sp. <i>tritici</i> Through Characterization of a Sexual Population with Genotyping-by-Sequencing. Phytopathology, 2018, 108, 133-141.	2.2	31
23	Analysis and mapping of Rhizoctonia root rot resistance traits from the synthetic wheat (Triticum) Tj ETQq1 1 0.7	78 <u>43</u> 14 rg	BT ₈ /Overlock
24	Virulence and Molecular Characterization of Experimental Isolates of the Stripe Rust Pathogen (<i>Puccinia striiformis</i>) Indicate Somatic Recombination. Phytopathology, 2017, 107, 329-344.	2.2	46
25	Registration of †Pritchett' Soft White Winter Club Wheat. Journal of Plant Registrations, 2017, 11, 152-158.	0.5	6
26	Secretome Characterization and Correlation Analysis Reveal Putative Pathogenicity Mechanisms and Identify Candidate Avirulence Genes in the Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici. Frontiers in Microbiology, 2017, 8, 2394.	3.5	29
27	Mapping genes for resistance to stripe rust in spring wheat landrace PI 480035. PLoS ONE, 2017, 12, e0177898.	2.5	11
28	Secreted protein gene derived-single nucleotide polymorphisms (SP-SNPs) reveal population diversity and differentiation of Puccinia striiformis f. sp. tritici in the United States. Fungal Biology, 2016, 120, 729-744.	2.5	23
29	Association Analysis of SP-SNPs and Avirulence Genes in <i>Puccinia striiformis</i> f. sp. <i>tritici</i> , the Wheat Stripe Rust Pathogen. American Journal of Plant Sciences, 2016, 07, 126-137.	0.8	13
30	Mapping a Large Number of QTL for Durable Resistance to Stripe Rust in Winter Wheat Druchamp Using SSR and SNP Markers. PLoS ONE, 2015, 10, e0126794.	2.5	81
31	Genetic Diversity among Wheat Accessions from the USDA National Small Grains Collection. Crop Science, 2015, 55, 1243-1253.	1.8	41
32	Genetic Diversity for Stripe Rust Resistance in Wheat Landraces and Identification of Accessions with Resistance to Stem Rust and Stripe Rust. Crop Science, 2014, 54, 2131-2139.	1.8	22
33	Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8057-8062.	7.1	1,065
34	Registration of â€~Cara' Soft White Winter Club Wheat. Journal of Plant Registrations, 2013, 7, 81-88.	0.5	10
35	Gene evolution at the ends of wheat chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4162-4167.	7.1	67