
## Marco Acutis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3150425/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Comparison of sensitivity analysis techniques: A case study with the rice model WARM. Ecological<br>Modelling, 2010, 221, 1897-1906.                                                                                                                               | 1.2 | 207       |
| 2  | Short-term experiments in using digestate products as substitutes for mineral (N) fertilizer:<br>Agronomic performance, odours, and ammonia emission impacts. Science of the Total Environment,<br>2016, 547, 206-214.                                             | 3.9 | 144       |
| 3  | Nitrate leaching under maize cropping systems in Po Valley (Italy). Agriculture, Ecosystems and<br>Environment, 2012, 147, 57-65.                                                                                                                                  | 2.5 | 135       |
| 4  | Development of an app for estimating leaf area index using a smartphone. Trueness and precision<br>determination and comparison with other indirect methods. Computers and Electronics in<br>Agriculture, 2013, 96, 67-74.                                         | 3.7 | 130       |
| 5  | Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land<br>use, soil texture, topographic indices and the influence of remote sensing data to modelling. Science<br>of the Total Environment, 2017, 601-602, 821-832. | 3.9 | 122       |
| 6  | Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Climate Research, 2015, 65, 87-105.                                                                                | 0.4 | 122       |
| 7  | Multi-metric evaluation of the models WARM, CropSyst, and WOFOST for rice. Ecological Modelling, 2009, 220, 1395-1410.                                                                                                                                             | 1.2 | 103       |
| 8  | Origin and fate of nitrates in groundwater from the central Po plain: Insights from isotopic investigations. Applied Geochemistry, 2013, 34, 164-180.                                                                                                              | 1.4 | 90        |
| 9  | Sensitivity analysis of the rice model WARM in Europe: Exploring the effects of different locations, climates and methods of analysis on model sensitivity to crop parameters. Environmental Modelling and Software, 2010, 25, 479-488.                            | 1.9 | 88        |
| 10 | SOILPAR 2.00: software to estimate soil hydrological parameters and functions. European Journal of Agronomy, 2003, 18, 373-377.                                                                                                                                    | 1.9 | 83        |
| 11 | An Indicator of Solar Radiation Model Performance based on a Fuzzy Expert System. Agronomy<br>Journal, 2002, 94, 1222-1233.                                                                                                                                        | 0.9 | 82        |
| 12 | irene: a software to evaluate model performance. European Journal of Agronomy, 2003, 18, 369-372.                                                                                                                                                                  | 1.9 | 76        |
| 13 | Sensitivity analysis for a complex crop model applied to Durum wheat in the Mediterranean. European<br>Journal of Agronomy, 2010, 32, 127-136.                                                                                                                     | 1.9 | 76        |
| 14 | SWAP, CropSyst and MACRO comparison in two contrasting soils cropped with maize in Northern<br>Italy. Agricultural Water Management, 2010, 97, 1051-1062.                                                                                                          | 2.4 | 71        |
| 15 | Can conservation agriculture increase soil carbon sequestration? A modelling approach. Geoderma, 2020, 369, 114298.                                                                                                                                                | 2.3 | 63        |
| 16 | Uncertainty in crop model predictions: What is the role of users?. Environmental Modelling and Software, 2016, 81, 165-173.                                                                                                                                        | 1.9 | 62        |
| 17 | Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean<br>grasslands: Uncertainties and ensemble performance. European Journal of Agronomy, 2017, 88, 22-40.                                                             | 1.9 | 58        |
| 18 | Evaluation of mitigation strategies to reduce ammonia losses from slurry fertilisation on arable<br>lands. Science of the Total Environment, 2013, 449, 126-133.                                                                                                   | 3.9 | 52        |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Modelling the topsoil carbon stock of agricultural lands with the Stochastic Gradient Treeboost in a semi-arid Mediterranean region. Geoderma, 2017, 286, 35-45.                                    | 2.3 | 48        |
| 20 | Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change. Agricultural Systems, 2018, 159, 209-224.                                 | 3.2 | 47        |
| 21 | Multi metric evaluation of leaf wetness models for large-area application of plant disease models.<br>Agricultural and Forest Meteorology, 2011, 151, 1163-1172.                                    | 1.9 | 46        |
| 22 | A proposal of an indicator for quantifying model robustness based on the relationship between variability of errors and of explored conditions. Ecological Modelling, 2010, 221, 960-964.           | 1.2 | 45        |
| 23 | An analysis of agricultural sustainability of cropping systems in arable and dairy farms in an intensively cultivated plain. European Journal of Agronomy, 2011, 34, 71-82.                         | 1.9 | 43        |
| 24 | Model simplification and development via reuse, sensitivity analysis and composition: A case study in crop modelling. Environmental Modelling and Software, 2014, 59, 44-58.                        | 1.9 | 43        |
| 25 | Forecasting sugarcane yields using agro-climatic indicators and Canegro model: A case study in the main production region in Brazil. Agricultural Systems, 2017, 154, 45-52.                        | 3.2 | 41        |
| 26 | Perfunctory analysis of variance in agronomy, and its consequences in experimental results interpretation. European Journal of Agronomy, 2012, 43, 129-135.                                         | 1.9 | 40        |
| 27 | Topographic impacts on wheat yields under climate change: two contrasted case studies in Europe.<br>Theoretical and Applied Climatology, 2010, 99, 53-65.                                           | 1.3 | 38        |
| 28 | Stochastic use of the LEACHN model to forecast nitrate leaching in different maize cropping systems.<br>European Journal of Agronomy, 2000, 13, 191-206.                                            | 1.9 | 36        |
| 29 | Performance assessment of nitrate leaching models for highly vulnerable soils used in low-input<br>farming based on lysimeter data. Science of the Total Environment, 2014, 499, 463-480.           | 3.9 | 35        |
| 30 | New multi-model approach gives good estimations of wheat yield under semi-arid climate in Morocco.<br>Agronomy for Sustainable Development, 2015, 35, 157-167.                                      | 2.2 | 35        |
| 31 | Dual-porosity and kinematic wave approaches to assess the degree of preferential flow in an unsaturated soil. Hydrological Sciences Journal, 2003, 48, 455-472.                                     | 1.2 | 34        |
| 32 | ValorE: An integrated and GIS-based decision support system for livestock manure management in the<br>Lombardy region (northern Italy). Land Use Policy, 2014, 41, 149-162.                         | 2.5 | 34        |
| 33 | Agro-environmental aspects of conservation agriculture compared to conventional systems: A 3-year experience on 20 farms in the Po valley (Northern Italy). Agricultural Systems, 2019, 168, 73-87. | 3.2 | 34        |
| 34 | An integrated evaluation of thirteen modelling solutions for the generation of hourly values of air relative humidity. Theoretical and Applied Climatology, 2010, 102, 429-438.                     | 1.3 | 33        |
| 35 | Quantifying uncertainty in crop model predictions due to the uncertainty in the observations used for calibration. Ecological Modelling, 2016, 328, 72-77.                                          | 1.2 | 33        |
| 36 | The CropSyst model to simulate the N balance of rice for alternative management. Agronomy for Sustainable Development, 2006, 26, 241-249.                                                           | 2.2 | 32        |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Precision determination for the dynamic respirometric index (DRI) method used for biological stability evaluation on municipal solid waste and derived products. Waste Management, 2011, 31, 2-9.               | 3.7 | 31        |
| 38 | A model for simulating the height of rice plants. European Journal of Agronomy, 2011, 34, 20-25.                                                                                                                | 1.9 | 29        |
| 39 | Improving inÂvivo plant nitrogen content estimates from digital images: Trueness and precision of a new approach as compared to other methods and commercial devices. Biosystems Engineering, 2015, 135, 21-30. | 1.9 | 29        |
| 40 | New pedotransfer approaches to predict soil bulk density using WoSIS soil data and environmental covariates in Mediterranean agro-ecosystems. Science of the Total Environment, 2021, 780, 146609.              | 3.9 | 29        |
| 41 | IRENE_DLL: A Class Library for Evaluating Numerical Estimates. Agronomy Journal, 2003, 95, 1330-1333.                                                                                                           | 0.9 | 28        |
| 42 | New Indices to Quantify Patterns of Residuals Produced by Model Estimates. Agronomy Journal, 2004,<br>96, 631-645.                                                                                              | 0.9 | 27        |
| 43 | Modelling the point and non-point nitrogen loads to the Venice Lagoon (Italy): the application of water quality models to the Dese-Zero basin. Desalination, 2008, 226, 81-88.                                  | 4.0 | 26        |
| 44 | Inverse dispersion modelling highlights the efficiency of slurry injection to reduce ammonia losses by agriculture in the Po Valley (Italy). Agricultural and Forest Meteorology, 2013, 171-172, 306-318.       | 1.9 | 26        |
| 45 | Designing a high-yielding maize ideotype for a changing climate in Lombardy plain (northern Italy).<br>Science of the Total Environment, 2014, 499, 497-509.                                                    | 3.9 | 24        |
| 46 | A Component-Based Framework for Simulating Agricultural Production and Externalities. , 2010, , 63-108.                                                                                                         |     | 23        |
| 47 | Analysis of rice sample size variability due to development stage, nitrogen fertilization, sowing technique and variety using the visual jackknife. Field Crops Research, 2006, 97, 135-141.                    | 2.3 | 22        |
| 48 | Quantifying plasticity in simulation models. Ecological Modelling, 2012, 225, 159-166.                                                                                                                          | 1.2 | 22        |
| 49 | Chloride profile technique to estimate water movement through unsatured zone in a cropped area in subhumid climate (Po Valley—NW Italy). Journal of Hydrology, 2003, 270, 65-74.                                | 2.3 | 21        |
| 50 | Expanding Horizons in the Validation of GMO Analytical Methods: Fuzzy-based Expert Systems. Food<br>Analytical Methods, 2008, 1, 126-135.                                                                       | 1.3 | 19        |
| 51 | A generic framework for evaluating hybrid models by reuse and composition – A case study on soil temperature simulation. Environmental Modelling and Software, 2014, 62, 478-486.                               | 1.9 | 19        |
| 52 | A new approach for determining rice critical nitrogen concentration. Journal of Agricultural Science, 2011, 149, 633-638.                                                                                       | 0.6 | 18        |
| 53 | A taxonomy-based approach to shed light on the babel of mathematical models for rice simulation.<br>Environmental Modelling and Software, 2016, 85, 332-341.                                                    | 1.9 | 18        |
| 54 | Dynamics of ammonia volatilisation measured by eddy covariance during slurry spreading in north<br>Italy. Agriculture, Ecosystems and Environment, 2016, 219, 1-13.                                             | 2.5 | 17        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A multi-approach software library for estimating crop suitability to environment. Computers and Electronics in Agriculture, 2013, 90, 170-175.                                                          | 3.7 | 16        |
| 56 | Deliberative processes for comprehensive evaluation of agroecological models. A review. Agronomy for Sustainable Development, 2015, 35, 589-605.                                                        | 2.2 | 16        |
| 57 | Soil type and cropping system as drivers of soil quality indicators response to no-till: A 7-year field<br>study. Applied Soil Ecology, 2020, 155, 103646.                                              | 2.1 | 16        |
| 58 | Resampling-based software for estimating optimal sample size. Environmental Modelling and Software, 2007, 22, 1796-1800.                                                                                | 1.9 | 15        |
| 59 | Avoiding social traps in the ecosystem stewardship: The Italian Fontanile lowland spring. Science of the Total Environment, 2016, 539, 526-535.                                                         | 3.9 | 15        |
| 60 | Modelling nitrogen leaching from sewage sludge application to arable land in the Lombardy region (northern Italy). Science of the Total Environment, 2013, 461-462, 509-518.                            | 3.9 | 14        |
| 61 | Assimilation of COSMO-SkyMed-derived LAI maps into the AQUATER crop growth simulation model.<br>Capitanata (Southern Italy) case study. European Journal of Remote Sensing, 2013, 46, 891-908.          | 1.7 | 14        |
| 62 | District specific, in silico evaluation of rice ideotypes improved for resistance/tolerance traits to biotic and abiotic stressors under climate change scenarios. Climatic Change, 2015, 132, 661-675. | 1.7 | 14        |
| 63 | Analytical Method Performance Evaluation (AMPE)A Software Tool for Analytical Method Validation.<br>Journal of AOAC INTERNATIONAL, 2007, 90, 1432-1438.                                                 | 0.7 | 13        |
| 64 | Analysis of sample size for variables related to plant, soil, and soil microbial respiration in a paddy rice field. Field Crops Research, 2009, 113, 125-130.                                           | 2.3 | 13        |
| 65 | Epidemiology and agronomic predictors of herbicide resistance in rice at a large scale. Agronomy for<br>Sustainable Development, 2018, 38, 1.                                                           | 2.2 | 13        |
| 66 | Modelling of Soil Organic Carbon in the Mediterranean area: a systematic map. Rendiconti Online<br>Societa Geologica Italiana, 0, 46, 161-166.                                                          | 0.3 | 13        |
| 67 | A methodology for designing and evaluating alternative cropping systems: Application on dairy and arable farms. Ecological Indicators, 2012, 23, 189-201.                                               | 2.6 | 12        |
| 68 | The Nitrification Inhibitor Vizura® Reduces N2O Emissions When Added to Digestate before Injection under Irrigated Maize in the Po Valley (Northern Italy). Agronomy, 2019, 9, 431.                     | 1.3 | 12        |
| 69 | A simple pipeline for the assessment of legacy soil datasets: An example and test with soil organic carbon from a highly variable area. Catena, 2019, 175, 110-122.                                     | 2.2 | 12        |
| 70 | AQUATER Software as a DSS for Irrigation Management in Semi-Arid Mediterranean Areas. Italian<br>Journal of Agronomy, 2010, 5, 205.                                                                     | 0.4 | 11        |
| 71 | An integrated procedure to evaluate hydrological models. Hydrological Processes, 2010, 24, 2762-2770.                                                                                                   | 1.1 | 10        |
| 72 | The development of a methodology using fuzzy logic to assess the performance of cropping systems based on a case study of maize in the Po Valley. Soil Use and Management, 2013, 29, 576-585.           | 2.6 | 9         |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Evaluation of WARM for different establishment techniques in Jiangsu (China). European Journal of<br>Agronomy, 2014, 59, 78-85.                                                                                  | 1.9 | 8         |
| 74 | Integrating a spatial micrometeorological model into the risk assessment for arable crops in hilly terrain. , 2007, , 51-57.                                                                                     |     | 8         |
| 75 | Wheat modeling in Morocco unexpectedly reveals predominance of photosynthesis versus leaf area expansion plant traits. Agronomy for Sustainable Development, 2013, 33, 393-403.                                  | 2.2 | 7         |
| 76 | Zero-Tillage Effects on Durum Wheat Productivity and Soil-Related Variables in Future Climate<br>Scenarios: A Modeling Analysis. Agronomy, 2022, 12, 331.                                                        | 1.3 | 7         |
| 77 | Any chance to evaluate in vivo field methods using standard protocols?. Field Crops Research, 2014, 161, 128-136.                                                                                                | 2.3 | 5         |
| 78 | A new method for analysing the interrelationship between performance indicators with an application to agrometeorological models. Environmental Modelling and Software, 2015, 73, 286-304.                       | 1.9 | 5         |
| 79 | Reducing Topdressing N Fertilization with Variable Rates Does Not Reduce Maize Yield. Sustainability, 2021, 13, 8059.                                                                                            | 1.6 | 5         |
| 80 | EX-TRACT: An excel tool for the estimation of standard deviations from published articles.<br>Environmental Modelling and Software, 2022, 147, 105236.                                                           | 1.9 | 5         |
| 81 | Validating the regional estimates of changes in soil organic carbon by using the data from<br>paired-sites: the case study of Mediterranean arable lands. Carbon Balance and Management, 2021, 16,<br>19.        | 1.4 | 3         |
| 82 | Decision Support Systems To Manage Water Resources At Irrigation District Level In Southern Italy<br>Using Remote Sensing Information. An Integrated Project (AQUATER). AIP Conference Proceedings,<br>2006, , . | 0.3 | 2         |
| 83 | Long-term durum wheat monoculture: modelling and future projection. Italian Journal of Agronomy, 2012, 7, 13.                                                                                                    | 0.4 | 2         |
| 84 | Impact of Agromanagement Practices on Rice Elongation: Analysis and Modelling. Crop Science, 2014, 54, 2294-2302.                                                                                                | 0.8 | 1         |
| 85 | Evolution of vegetation under intensive grazing: Two examples in North-western Italian mountains.<br>Agriculture, Ecosystems and Environment, 1989, 27, 347-359.                                                 | 2.5 | О         |