Periklis Petropoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3150414/publications.pdf

Version: 2024-02-01

434 papers

8,435 citations

45 h-index 80 g-index

438 all docs 438 docs citations

438 times ranked

4538 citing authors

#	Article	IF	Citations
1	All-optical phase and amplitude regenerator for next-generation telecommunications systems. Nature Photonics, 2010, 4, 690-695.	31.4	595
2	26ÂTbitÂsâ^'1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nature Photonics, 2011, 5, 364-371.	31.4	483
3	Bismuth glass holey fibers with high nonlinearity. Optics Express, 2004, 12, 5082.	3.4	234
4	Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 738-749.	2.9	181
5	Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating. Optics Express, 2006, 14, 7617.	3.4	167
6	Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. Optics Express, 2003, 11, 3568.	3.4	165
7	A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings. Journal of Lightwave Technology, 2001, 19, 1352-1365.	4.6	159
8	High-efficiency grating-couplers: demonstration of a new design strategy. Scientific Reports, 2017, 7, 16670.	3.3	146
9	Multilevel quantization of optical phase in a novel coherent parametric mixer architecture. Nature Photonics, 2011, 5, 748-752.	31.4	145
10	Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating. Journal of Lightwave Technology, 2001, 19, 746-752.	4.6	142
11	Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications. Optics Express, 2008, 16, 13651.	3.4	140
12	Single-Laser 325ÂTbit/s Nyquist WDM Transmission. Journal of Optical Communications and Networking, 2012, 4, 715.	4.8	138
13	2R-regenerative all-optical switch based on a highly nonlinear holey fiber. Optics Letters, 2001, 26, 1233.	3.3	135
14	High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation. Journal of Lightwave Technology, 2006, 24, 183-190.	4.6	120
15	Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber. Optics Express, 2013, 21, 28559.	3.4	112
16	Si-rich Silicon Nitride for Nonlinear Signal Processing Applications. Scientific Reports, 2017, 7, 22.	3.3	111
17	Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold. IEEE Photonics Technology Letters, 2003, 15, 440-442.	2.5	110
18	Solid microstructured optical fiber. Optics Express, 2003, 11, 2225.	3.4	105

#	Article	IF	Citations
19	Fiber optical parametric amplifiers in optical communication systems. Laser and Photonics Reviews, 2015, 9, 50-74.	8.7	104
20	Generation of a 40-GHz pulse stream by pulse multiplication with a sampled fiber Bragg grating. Optics Letters, 2000, 25, 521.	3.3	103
21	Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device. Optics Express, 2007, 15, 852.	3.4	102
22	Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime. Optics Express, 2006, 14, 3161.	3.4	100
23	Design scaling rules for 2R-optical self-phase modulation-based regenerators. Optics Express, 2007, 15, 5100.	3.4	94
24	High-resolution microwave frequency transfer over an 86-km-long optical fiber network using a mode-locked laser. Optics Letters, 2011, 36, 511.	3.3	91
25	Supercontinuum generation in non-silica fibers. Optical Fiber Technology, 2012, 18, 327-344.	2.7	89
26	Demonstration of a four-channel WDM/OCDMA system using 255-chip 320-Gchip/s quarternary phase coding gratings. IEEE Photonics Technology Letters, 2002, 14, 227-229.	2.5	86
27	Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide. Optics Express, 2009, 17, 20393.	3.4	80
28	Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nature Communications, 2018, 9, 182.	12.8	73
29	Material and optical properties of low-temperature NH ₃ -free PECVD SiN _{<i>x</i>} layers for photonic applications. Journal Physics D: Applied Physics, 2017, 50, 025106.	2.8	71
30	Extruded singlemode, high-nonlinearity, tellurite glass holey fibre. Electronics Letters, 2005, 41, 835.	1.0	68
31	Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating. IEEE Photonics Technology Letters, 2006, 18, 829-831.	2.5	68
32	Detailed characterization of a†fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation. Optics Express, 2010, 18, 4130.	3.4	66
33	Inter-modal four-wave mixing study in a two-mode fiber. Optics Express, 2016, 24, 30338.	3.4	66
34	High Performance Mach–Zehnder-Based Silicon Optical Modulators. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 85-94.	2.9	59
35	Archon: A Function Programmable Optical Interconnect Architecture for Transparent Intra and Inter Data Center SDM/TDM/WDM Networking. Journal of Lightwave Technology, 2015, 33, 1586-1595.	4.6	58
36	Frequency comb generation in a silicon ring resonator modulator. Optics Express, 2018, 26, 790.	3.4	55

#	Article	IF	CITATIONS
37	Interband Short Reach Data Transmission in Ultrawide Bandwidth Hollow Core Fiber. Journal of Lightwave Technology, 2020, 38, 159-165.	4.6	53
38	A photonic switch based on a gigantic, reversible optical nonlinearity of liquefying gallium. Applied Physics Letters, 1998, 73, 1787-1789.	3.3	51
39	Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths. Optical Fiber Technology, 2010, 16, 378-391.	2.7	51
40	Mitigation of Nonlinear Effects on WDM QAM Signals Enabled by Optical Phase Conjugation With Efficient Bandwidth Utilization. Journal of Lightwave Technology, 2017, 35, 971-978.	4.6	50
41	Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror. Applied Physics Letters, 1999, 74, 3619-3621.	3.3	49
42	Broadband telecom to mid-infrared supercontinuum generation in a dispersion-engineered silicon germanium waveguide. Optics Letters, 2015, 40, 4118.	3.3	49
43	The Evolution of Optical OFDM. IEEE Communications Surveys and Tutorials, 2021, 23, 1430-1457.	39.4	48
44	A 36-channel x 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber. IEEE Photonics Technology Letters, 2003, 15, 1689-1691.	2.5	47
45	Electronic–photonic convergence for silicon photonics transmitters beyond 100 Gbps on–off keying. Optica, 2020, 7, 1514.	9.3	47
46	Mid-infrared supercontinuum generation in suspended core tellurite microstructured optical fibers. Optics Letters, 2015, 40, 2237.	3.3	46
47	Phase encoding and decoding of short pulses at 10 Gb/s using superstructured fiber Bragg gratings. IEEE Photonics Technology Letters, 2001, 13, 154-156.	2.5	45
48	Compensation of Linear Distortions by Using XPM With Parabolic Pulses as a Time Lens. IEEE Photonics Technology Letters, 2008, 20, 1097-1099.	2.5	45
49	Optical properties of silicon germanium waveguides at telecommunication wavelengths. Optics Express, 2013, 21, 16690.	3.4	44
50	All-optical pulse reshaping and retiming systems incorporating pulse shaping fiber Bragg grating. Journal of Lightwave Technology, 2006, 24, 357-364.	4.6	43
51	Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers. Optics Express, 2007, 15, 596.	3.4	43
52	Multi-Element Fiber Technology for Space-Division Multiplexing Applications. Optics Express, 2014, 22, 3787.	3.4	42
53	Progress in Multichannel All-Optical Regeneration Based on Fiber Technology. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 689-700.	2.9	40
54	Silicon Nitride Photonics for the Near-Infrared. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-13.	2.9	40

#	Article	IF	CITATIONS
55	An Efficient Wavelength Converter Exploiting a Grating-Based Saw-Tooth Pulse Shaper. IEEE Photonics Technology Letters, 2008, 20, 1461-1463.	2.5	39
56	Pulse shaping in mode-locked fiber lasers by in-cavity spectral filter. Optics Letters, 2014, 39, 438.	3.3	39
57	FWM-based wavelength conversion of 40 Gbaud PSK signals in a silicon germanium waveguide. Optics Express, 2013, 21, 16683.	3.4	38
58	All-optical mode and wavelength converter based on parametric processes in a three-mode fiber. Optics Express, 2017, 25, 33602.	3.4	38
59	A grating-based OCDMA coding-decoding system incorporating a nonlinear optical loop mirror for improved code recognition and noise reduction. Journal of Lightwave Technology, 2002, 20, 36-46.	4.6	37
60	First demonstration of all-optical QPSK signal regeneration in a novel multi-format phase sensitive amplifier. , 2010 , , .		37
61	Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1551¼m. Optics Express, 2009, 17, 20249.	3.4	36
62	Modelocked laser based on ytterbium doped holey fibre. Electronics Letters, 2001, 37, 560.	1.0	35
63	Microstructured fibers for sensing applications. , 2005, 6005, 78.		34
64	Polarization-Assisted Phase-Sensitive Processor. Journal of Lightwave Technology, 2015, 33, 1166-1174.	4.6	34
65	Nonlinear Silicon Photonic Signal Processing Devices for Future Optical Networks. Applied Sciences (Switzerland), 2017, 7, 103.	2.5	34
66	Modeling Brillouin Gain Spectrum of Solid and Microstructured Optical Fibers Using a Finite Element Method. Journal of Lightwave Technology, 2011, 29, 22-30.	4.6	33
67	Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices. Applied Physics Letters, 2005, 87, 081110.	3.3	32
68	Coherent All-Optical Phase and Amplitude Regenerator of Binary Phase-Encoded Signals. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 859-869.	2.9	32
69	Slowing of Pulses to c/10 With Subwatt Power Levels and Low Latency Using Brillouin Amplification in a Bismuth-Oxide Optical Fiber. Journal of Lightwave Technology, 2007, 25, 216-221.	4.6	31
70	Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration. Optics Express, 2008, 16, 2264.	3.4	31
71	Elliptical Core Few Mode Fibers for Multiple-Input Multiple Output-Free Space Division Multiplexing Transmission. IEEE Photonics Technology Letters, 2017, 29, 1764-1767.	2.5	31
72	All-Fiberized Dispersion-Managed Multichannel Regeneration at 43 Gb/s. IEEE Photonics Technology Letters, 2008, 20, 1854-1856.	2.5	30

#	Article	IF	Citations
73	Investigation of Simultaneous 2R Regeneration of Two 40-Gb/s Channels in a Single Optical Fiber. IEEE Photonics Technology Letters, 2008, 20, 270-272.	2.5	29
74	Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at $155\hat{l}\frac{1}{4}$ m. Optics Express, 2010, 18, 15747.	3.4	29
75	WDM Transmission With In-Line Amplification at $1.3 < i > \hat{l} \frac{1}{4} < i> m$ Using a Bi-Doped Fiber Amplifier. Journal of Lightwave Technology, 2019, 37, 1826-1830.	4.6	29
76	Single Source Optical OFDM Transmitter and Optical FFT Receiver Demonstrated at Line Rates of 5.4 and 10.8 Tbit/s. , 2010 , , .		29
77	Gridless optical networking field trial: flexible spectrum switching, defragmentation and transport of 10G/40G/100G/555G over 620-km field fiber. Optics Express, 2011, 19, B277.	3.4	28
78	Roadmap on multimode photonics. Journal of Optics (United Kingdom), 2022, 24, 083001.	2.2	27
79	Demonstration of a 64-chip OCDMA system using superstructured fiber gratings and time-gating detection. IEEE Photonics Technology Letters, 2001, 13, 1239-1241.	2.5	26
80	Single Source Optical OFDM Transmitter and Optical FFT Receiver Demonstrated at Line Rates of 5.4 and 10.8 Tbit/s. , 2010, , .		26
81	All-optical modulation and demultiplexing systems with significant timing jitter tolerance through incorporation of pulse-shaping fiber Bragg gratings. IEEE Photonics Technology Letters, 2002, 14 , 203-205.	2.5	25
82	2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber. Optics Express, 2006, 14, 5038.	3.4	25
83	Errata to "All-Optical Pulse Reshaping and Retiming Systems Incorporating Pulse Shaping Fiber Bragg Grating― Journal of Lightwave Technology, 2006, 24, 2963-2963.	4.6	24
84	Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m Bismuth-oxide fiber. , 2006, , .		24
85	Investigation of Four-Wavelength Regenerator Using Polarization- and Direction-Multiplexing. IEEE Photonics Technology Letters, 2008, 20, 1676-1678.	2.5	24
86	Full quadrature regeneration of QPSK signals using sequential phase sensitive amplification and parametric saturation. Optics Express, 2017, 25, 696.	3.4	24
87	Nanosecond dynamics of a gallium mirror's light-induced reflectivity change. Physical Review B, 2001, 63, .	3.2	23
88	All-Optical Packet Compression Based on Time-to-Wavelength Conversion. IEEE Photonics Technology Letters, 2004, 16, 1688-1690.	2.5	23
89	Efficient All-Optical Wavelength-Conversion Scheme Based on a Saw-Tooth Pulse Shaper. IEEE Photonics Technology Letters, 2009, 21, 1837-1839.	2.5	23
90	Experimental Demonstration of Dual O+C-Band WDM Transmission Over 50-km SSMF With Direct Detection. Journal of Lightwave Technology, 2020, 38, 2278-2284.	4.6	23

#	Article	IF	CITATIONS
91	Design and Characterisation of Terabit/s Capable Compact Localisation and Beam-Steering Terminals for Fiber-Wireless-Fiber Links. Journal of Lightwave Technology, 2020, 38, 6817-6826.	4.6	23
92	Reduction of interchannel interference noise in a two-channel grating-based OCDMA system using a nonlinear optical loop mirror. IEEE Photonics Technology Letters, 2001, 13, 529-531.	2.5	22
93	Nonlinear Generation of Ultra-Flat Broadened Spectrum Based on Adaptive Pulse Shaping. Journal of Lightwave Technology, 2012, 30, 1971-1977.	4.6	22
94	Towards nonlinear conversion from mid- to near-infrared wavelengths using Silicon Germanium waveguides. Optics Express, 2014, 22, 9667.	3.4	22
95	Four-Wave Mixing-Based Wavelength Conversion and Parametric Amplification in Submicron Silicon Core Fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-11.	2.9	22
96	Time domain add–drop multiplexing scheme enhanced using a saw-tooth pulse shaper. Optics Express, 2009, 17, 8362.	3.4	21
97	Wavelength Conversion in a Short Length of a Solid Lead–Silicate Fiber. IEEE Photonics Technology Letters, 2010, 22, 628-630.	2.5	21
98	Ultra-Compact Amorphous Silicon Waveguide for Wavelength Conversion. IEEE Photonics Technology Letters, 2016, 28, 410-413.	2.5	21
99	OTDM to WDM format conversion based on quadratic cascading in a periodically poled lithium niobate waveguide. Optics Express, 2010, 18, 10282.	3.4	20
100	Optical Phase Quantizer Based on Phase Sensitive Four Wave Mixing at Low Nonlinear Phase Shifts. IEEE Photonics Technology Letters, 2014, 26, 2146-2149.	2.5	20
101	Bandwidth enhancement of inter-modal four wave mixing Bragg scattering by means of dispersion engineering. APL Photonics, 2019, 4, 022902.	5 . 7	20
102	QPSK Phase and Amplitude Regeneration at 56 Gbaud in a Novel Idler-Free Non-Degenerate Phase Sensitive Amplifier. , 2011, , .		20
103	Intermodal Bragg-Scattering Four Wave Mixing in Silicon Waveguides. Journal of Lightwave Technology, 2019, 37, 1680-1685.	4.6	19
104	Intermodal frequency generation in silicon-rich silicon nitride waveguides. Photonics Research, 2019, 7, 615.	7.0	19
105	Early antiplatelet and antithrombotic therapy in patients with a history of recurrent miscarriages of known and unknown aetiology. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2005, 120, 22-26.	1.1	18
106	First Demonstration of $2\hat{A}\mu m$ Data Transmission in a Low-Loss Hollow Core Photonic Bandgap Fiber. , 2012, , .		18
107	Brillouin assisted slow-light enhancement via Fabry-Perot cavity effects. Optics Express, 2007, 15, 5126.	3.4	17
108	Four-Channel All-Fiber Dispersion-Managed 2R Regenerator. IEEE Photonics Technology Letters, 2008, 20, 1169-1171.	2.5	17

#	Article	IF	Citations
109	Field-Trial of an All-Optical PSK Regenerator/Multicaster in a 40 Gbit/s, 38 Channel DWDM Transmission Experiment. Journal of Lightwave Technology, 2012, 30, 512-520.	4.6	17
110	All-optical Phase Regeneration with Record PSA Extinction Ratio in a Low-birefringence Silicon Germanium Waveguide. Journal of Lightwave Technology, 2016, 34, 3993-3998.	4.6	17
111	Multi-Channel Phase Regenerator Based on Polarization-Assisted Phase-Sensitive Amplification. IEEE Photonics Technology Letters, 2016, 28, 845-848.	2.5	17
112	Experimental comparison of direct detection Nyquist SSB transmission based on silicon dual-drive and IQ Mach-Zehnder modulators with electrical packaging. Optics Express, 2017, 25, 19332.	3.4	17
113	Multi-Band Direct-Detection Transmission Over an Ultrawide Bandwidth Hollow-Core NANF. Journal of Lightwave Technology, 2020, 38, 2849-2857.	4.6	17
114	Polarization-Insensitive Four-Wave-Mixing-Based Wavelength Conversion in Few-Mode Optical Fibers. Journal of Lightwave Technology, 2018, 36, 3678-3683.	4.6	16
115	Experimental characterization of an o-band bismuth-doped fiber amplifier. Optics Express, 2021, 29, 15345.	3.4	16
116	OTDM add-drop multiplexer based on time-frequency signal processing. Journal of Lightwave Technology, 2006, 24, 2720-2732.	4.6	15
117	Stable and Efficient Generation of High Repetition Rate (\$>\$160 GHz) Subpicosecond Optical Pulses. IEEE Photonics Technology Letters, 2011, 23, 540-542.	2.5	15
118	Processing of optical combs with fiber optic parametric amplifiers. Optics Express, 2012, 20, 10059.	3.4	15
119	Broadband, Flat Frequency Comb Generated Using Pulse Shaping-Assisted Nonlinear Spectral Broadening. IEEE Photonics Technology Letters, 2013, 25, 543-545.	2.5	15
120	Fast and broadband fiber dispersion measurement with dense wavelength sampling. Optics Express, 2014, 22, 943.	3.4	15
121	Phase Regeneration of QPSK Signal in SOA Using Single-Stage, Wavelength Converting PSA. IEEE Photonics Technology Letters, 2016, 28, 205-208.	2.5	15
122	Picosecond all-optical switching and dark pulse generation in a fibre-optic network using a plasmonic metamaterial absorber. Applied Physics Letters, 2018, 113, .	3.3	15
123	Ultrawide Bandwidth Hollow Core Fiber for Interband Short Reach Data Transmission. , 2019, , .		15
124	A Review of Capabilities and Scope for Hybrid Integration Offered by Silicon-Nitride-Based Photonic Integrated Circuits. Sensors, 2022, 22, 4227.	3.8	15
125	Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings. IEEE Photonics Technology Letters, 2006, 18, 1216-1218.	2.5	14
126	Full Characterization of Low-Power Picosecond Pulses From a Gain-Switched Diode Laser Using Electrooptic Modulation-Based Linear FROG. IEEE Photonics Technology Letters, 2008, 20, 505-507.	2.5	14

#	Article	IF	Citations
127	Efficient Wavelength Conversion Using Triangular Pulses Generated Using a SuperStructured Fiber Bragg Grating., 2008,,.		14
128	Field Experiments With a Grooming Switch for OTDM Meshed Networking. Journal of Lightwave Technology, 2010, 28, 316-327.	4.6	14
129	Amplified O-Band WDM Transmission Using a Bi-Doped Fibre Amplifier. , 2018, , .		14
130	Co-design of a differential transimpedance amplifier and balanced photodetector for a sub-pJ/bit silicon photonics receiver. Optics Express, 2020, 28, 14038.	3.4	14
131	All-optical phase regeneration of 40Gbit/s DPSK signals in a black-box phase sensitive amplifier. , 2010, , .		14
132	99.9% reflectivity dispersion-less square-filter fibre Bragg gratings for high speed DWDM networks. , 0, , .		13
133	Generalisation and Experimental Validation of Design Rules for Self-Phase Modulation-based 2R-Regenerators., 2007,,.		13
134	Wide Bandwidth Experimental Study of Nondegenerate Phase-Sensitive Amplifiers in Single- and Dual-Pump Configurations. IEEE Photonics Technology Letters, 2010, 22, 1781-1783.	2.5	13
135	Modulation format conversion employing coherent optical superposition. Optics Express, 2012, 20, 8322.	3.4	13
136	Optimisation of amplitude limiters for phase preservation based on the exact solution to degenerate four-wave mixing. Optics Express, 2016, 24, 2774.	3.4	13
137	Wavelength conversion of complex modulation formats in a compact SiGe waveguide. Optics Express, 2017, 25, 3252.	3.4	13
138	High Gain, Low Noise, Spectral-Gain-Controlled, Broadband Lumped Fiber Raman Amplifier. Journal of Lightwave Technology, 2021, 39, 1458-1463.	4.6	13
139	Light-induced metallization at the gallium-silica interface. Physical Review B, 2001, 64, .	3.2	12
140	Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 $1\frac{1}{4}$ m - 5 $1\frac{1}{4}$ m. , 2006, , .		12
141	Optical grooming switch with regenerative functionality for transparent interconnection of networks. Optics Express, 2009, 17, 15173.	3.4	12
142	All-Optical 160-Gbit/s Retiming System Using Fiber Grating Based Pulse Shaping Technology. Journal of Lightwave Technology, 2009, 27, 1135-1141.	4.6	12
143	Numerical and experimental study on the impact of chromatic dispersion on O-band direct-detection transmission. Applied Optics, 2021, 60, 4383.	1.8	12
144	Demonstration of >1Tbit/s WDM OWC with wavelength-transparent beam tracking-and-steering capability. Optics Express, 2021, 29, 33694.	3.4	12

#	Article	IF	CITATIONS
145	Supercontinuum generation in tantalum pentoxide waveguides for pump wavelengths in the 900 nm to 1500 nm spectral region. Optics Express, 2020, 28, 32173.	3.4	12
146	Demonstration of a simple CDMA transmitter and receiver using sampled fibre gratings. , 0, , .		11
147	Passive Q-switching of an Er3+:Yb3+ fibre laser with a fibrised liquefying gallium mirror. Optics Communications, 1999, 166, 239-243.	2.1	11
148	Cross-wavelength all-optical switching using nonlinearity of liquefying gallium. Optics Express, 1999, 5, 157.	3.4	11
149	A 16-Channel Reconfigurable OCDMA/DWDM System Using Continuous Phase-Shift SSFBGs. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 1480-1486.	2.9	11
150	Timing Jitter Tolerant All-Optical TDM Demultiplexing Using a Saw-Tooth Pulse Shaper. IEEE Photonics Technology Letters, 2008, 20, 1992-1994.	2.5	11
151	Dispersion Management in Highly Nonlinear, Carbon Disulfide Filled Holey Fibers. IEEE Photonics Technology Letters, 2008, 20, 1449-1451.	2.5	11
152	All-Optical Signal Processing of Periodic Signals Using a Brillouin Gain Comb. Journal of Lightwave Technology, 2008, 26, 3110-3117.	4.6	11
153	Retiming of Short Pulses Using Quadratic Cascading in a Periodically Poled Lithium Niobate Waveguide. IEEE Photonics Technology Letters, 2011, 23, 94-96.	2.5	11
154	100-GHz Grid-Aligned Multi-Channel Polarization Insensitive Black-Box Wavelength Converter. Journal of Lightwave Technology, 2014, 32, 3027-3035.	4.6	11
155	First demonstration of all-optical programmable SDM/TDM intra data centre and WDM inter-DCN communication. , 2014, , .		11
156	Apodized silicon photonic grating couplers for mode-order conversion. Photonics Research, 2019, 7, 1036.	7.0	11
157	Dispersion-free fibre Bragg gratings. , 0, , .		11
158	Generation of Mid-IR continuum using tellurite microstructured fiber. , 2006, , .		10
159	High-Speed DD Transmission Using a Silicon Receiver Co-Integrated With a 28-nm CMOS Gain-Tunable Fully-Differential TIA. Journal of Lightwave Technology, 2021, 39, 1138-1147.	4.6	10
160	Selective wavelength conversion in a few-mode fiber. Optics Express, 2019, 27, 24072.	3.4	10
161	Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber. , 2003, , .		9
162	Direct characterization of the spatial effective refractive index profile in Bragg gratings. IEEE Photonics Technology Letters, 2005, 17, 2685-2687.	2.5	9

#	Article	IF	Citations
163	A 2R Mamyshev Regeneration Architecture Based on a Three-Fiber Arrangement. Journal of Lightwave Technology, 2010, 28, 1373-1379.	4.6	9
164	Phase regeneration of DPSK signals in a highly nonlinear lead-silicate W-type fiber. Optics Express, 2012, 20, 27419.	3.4	9
165	Phase sensitive amplification in a highly nonlinear lead-silicate fiber. Optics Express, 2012, 20, 1629.	3.4	9
166	All-Optical Processing of Multi-level Phase Shift Keyed Signals. , 2012, , .		9
167	Nonlinearity mitigation through optical phase conjugation in a deployed fibre link with full bandwidth utilization. , $2015, \ldots$		9
168	Ten gigabit per second optical transmissions at 1.98 Âμm in centimetreâ€long SiGe waveguides. Electronics Letters, 2017, 53, 1213-1214.	1.0	9
169	Hollow-Core NANF for High-Speed Short-Reach Transmission in the S+C+L-Bands. Journal of Lightwave Technology, 2021, 39, 6167-6174.	4.6	9
170	Beyond Terabit/s WDM Optical Wireless Transmission using Wavelength-transparent Beam Tracking and Steering. , 2020, , .		9
171	Deep Learning-Aided Optical IM/DD OFDM Approaches the Throughput of RF-OFDM. IEEE Journal on Selected Areas in Communications, 2022, 40, 212-226.	14.0	9
172	Generation of ultra-flat SPM-broadened spectra in a highly nonlinear fiber using pulse pre-shaping in a fiber Bragg grating. , 2005, , .		8
173	First Demonstration of an Amplified Transmission Line Based on Multi-Element Fibre Technology. , 2013, , .		8
174	Suppression of Gain Variation in a PSA-Based Phase Regenerator Using an Additional Harmonic. IEEE Photonics Technology Letters, 2014, 26, 2074-2077.	2.5	8
175	An Optical Phase Quantiser Exhibiting Suppressed Phase Dependent Gain Variation. , 2014, , .		8
176	Polarization Insensitive Wavelength Conversion in a Low-Birefringence SiGe Waveguide. IEEE Photonics Technology Letters, 2016, 28, 1221-1224.	2.5	8
177	Linear-distortion compensation using XPM with parabolic pulses. , 2007, , .		7
178	Optical interconnection of core and metro networks [Invited]. Journal of Optical Networking, 2008, 7, 928.	2.5	7
179	TDM-to-WDM conversion from 130 Gbit/s to 3 × 43 Gbit/s using XPM in a NOLM switch. , 2008, , .		7
180	Phase-regenerative wavelength conversion in periodically poled lithium niobate waveguides. Optics Express, 2011, 19, 11705.	3.4	7

#	Article	IF	CITATIONS
181	Record Phase Sensitive Extinction Ratio in a Silicon Germanium Waveguide., 2015,,.		7
182	Cryptography in coherent optical information networks using dissipative metamaterial gates. APL Photonics, 2019, 4, 046102.	5.7	7
183	Lowâ€Latency WDM Intensityâ€Modulation and Directâ€Detection Transmission Over >100Âkm Distances in a Hollow Core Fiber. Laser and Photonics Reviews, 2021, 15, 2100102.	8.7	7
184	All-optical 160 Gbit/s RZ data retiming system incorporating a pulse shaping fibre Bragg grating. , 2007, , .		7
185	An Optical Frequency Comb Generator as a Broadband Pulse Source. , 2009, , .		7
186	On-Demand Spectrum and Space Defragmentation in an Elastic SDM/FDM/TDM Network with Mixed Multi- and Single-core Fiber Links. , $2013,$, .		7
187	Generation, recognition and recoding of 64-chip bipolar optical code sequences using superstructured fibre Bragg gratings. Electronics Letters, 2001, 37, 190.	1.0	6
188	Fabrication and optical properties of lead silicate glass holey fibers. Journal of Non-Crystalline Solids, 2004, 345-346, 293-296.	3.1	6
189	Effect of dispersion slope of highly nonlinear fibre on the performance of Self Phase Modulation based 2R-optical regenerator. , 2010, , .		6
190	Full characterization and comparison of phase properties of narrow linewidth lasers operating in the C-band. Proceedings of SPIE, $2011, \ldots$	0.8	6
191	An All-Optical Grooming Switch for Interconnecting Access and Metro Ring Networks [Invited]. Journal of Optical Communications and Networking, 2011, 3, 206.	4.8	6
192	C- to L- band Wavelength Conversion Enabled by Parametric Processes in a Few Mode Fiber. , 2017, , .		6
193	Cavity ring-down in a photonic bandgap fiber gas cell. , 2008, , .		6
194	Si-rich Si nitride waveguides for optical transmissions and toward wavelength conversion around 2  μm. Applied Optics, 2019, 58, 5165.	1.8	6
195	PAM4 transmission over 360 km of fibre using optical phase conjugation. OSA Continuum, 2019, 2, 973.	1.8	6
196	ML-Assisted Equalization for 50-Gb/s/ \hat{l} » O-Band CWDM Transmission Over 100-km SMF. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-10.	2.9	6
197	A 4-channel WDM/OCDMA system incorporating 255-chip, 320 Gchip/s quaternary phase coding and decoding gratings., 0,,.		5
198	Timing jitter tolerant all-optical modulator and demultiplexing systems incorporating pulse-shaping fiber Bragg gratings. , 0, , .		5

#	Article	IF	Citations
199	Novel fabrication method of highly-nonlinear silica holey fibres. , 2006, , .		5
200	Experimental Investigation of a Dispersion-Managed Multi-channel 2R Optical Regenerator. , 2008, , .		5
201	Saturation effects in degenerate phase sensitive fiber optic parametric amplifiers. , 2010, , .		5
202	Multichannel Wavelength Conversion of 40-Gb/s Nonreturn-to-Zero DPSK Signals in a Lead–Silicate Fiber. IEEE Photonics Technology Letters, 2010, 22, 1153-1155.	2.5	5
203	500km remote interrogation of optical sensor arrays. Proceedings of SPIE, 2011, , .	0.8	5
204	Analysis of acceptable spectral windows of quadratic cascaded nonlinear processes in a periodically poled lithium niobate waveguide. Optics Express, 2011, 19, 8327.	3.4	5
205	Efficient binary phase quantizer based on phase sensitive four wave mixing. , 2014, , .		5
206	FWM-based, Idler-free Phase Quantiser with Flexible Operating Power. , 2015, , .		5
207	PSA-based all-optical multi-channel phase regenerator. , 2015, , .		5
208	Demonstration of Space-to-Wavelength Conversion in SDM Networks. IEEE Photonics Technology Letters, 2015, 27, 828-831.	2.5	5
209	Phase regeneration of an M-PSK signal using partial regeneration of its M/2-PSK second phase harmonic. Optics Communications, 2015, 334, 35-40.	2.1	5
210	Optical Predistortion Enabling Phase Preservation in Optical Signal Processing Demonstrated in FWM-Based Amplitude Limiter. Journal of Lightwave Technology, 2017, 35, 963-970.	4.6	5
211	MIMO-less Space Division Multiplexing Transmission over 1 km Elliptical Core Few Mode Fiber., 2017,,.		5
212	A highly nonlinear holey fiber and its application in a regenerative optical switch., 0,,.		5
213	Machine-Learning-Aided Optical OFDM for Intensity Modulated Direct Detection. Journal of Lightwave Technology, 2022, 40, 2357-2369.	4.6	5
214	Light-induced specular-reflectivity suppression at a gallium/silica interface. Optics Letters, 2000, 25, 1594.	3.3	4
215	Heavy metal oxide glass holey fibers with high nonlinearity. , 2005, , .		4
216	Advances in microstructured fiber technology. , 0, , .		4

#	Article	IF	Citations
217	Reconfigurable all-optical packet switching based on fiber Bragg gratings. , 2006, , .		4
218	Demonstration of a 16-channel code-reconfigurable OCDMA/DWDM system., 2007,,.		4
219	Self-Phase Modulation-based 2R optical regenerator for the simultaneous processing of two WDM channels., 2007,,.		4
220	Characterization of XGM and XPM in a SOA-MZI using a Linear Frequency Resolved Gating Technique. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	4
221	An all-optical grooming switch to interconnect access and metro ring networks. , 2008, , .		4
222	Multiple access interference rejection in OCDMA using a two-photon absorption based semiconductor device. Optics Communications, 2009, 282, 1281-1286.	2.1	4
223	2R Regeneration of Two 130 Gbit/s Channels Within a Single Fiber. , 2009, , .		4
224	Optical WDM regeneration: status and future prospects. , 2009, , .		4
225	All-optical phase-regenerative multicasting of 40 Gbit/s DPSK signal in a degenerate phase sensitive amplifier. , 2010, , .		4
226	Recent advances in highly nonlinear fibres. , 2010, , .		4
227	Quadrature decomposition of optical fields using two orthogonal phase sensitive amplifiers. , 2014, , .		4
228	PSA-based phase regeneration of DPSK signals in a silicon germanium waveguide. , 2015, , .		4
229	Transient response of a passively mode-locked Er-doped fiber ring laser. Optics Communications, 2015, 356, 161-165.	2.1	4
230	496 Gb/s direct detection DMT transmission over 40 km single mode fibre using an electrically packaged silicon photonic modulator. Optics Express, 2017, 25, 29798.	3.4	4
231	4-Level Alternate-Mark-Inversion for Reach Extension in the O-Band Spectral Region. Journal of Lightwave Technology, 2021, 39, 2847-2853.	4.6	4
232	First Investigation on Double- and Single-sideband Formats in BDFA-enabled O-band Transmission. , 2020, , .		4
233	Channel Selective Wavelength Conversion by Means of Inter Modal Four Wave Mixing. , 2019, , .		4
234	High-speed multi-layer coded adaptive LACO-OFDM and its experimental verification. OSA Continuum, 2020, 3, 2614.	1.8	4

#	Article	IF	Citations
235	Field Trial of WDM-OTDM Transmultiplexing employing Photonic Switch Fabric-based Buffer-less Bit-interleaved Data Grooming and All-Optical Regeneration. , 2009, , .		4
236	OTDM to WDM Format Conversion Based on Cascaded SHG/DFG in a Single PPLN Waveguide. , 2010, , .		4
237	Novel Polarisation-assisted Phase Sensitive Optical Signal Processor Requiring Low Nonlinear Phase Shifts. , 2014, , .		4
238	Polarization Control in Integrated Silicon Waveguides Using Semiconductor Nanowires. Nanomaterials, 2022, 12, 2438.	4.1	4
239	Cascaded-chi(2)-interaction-based frequency-resolved optical gating in a periodically poled LiNbO3 waveguide. Optics Letters, 2006, 31, 244.	3.3	3
240	Reduction of Multiple Access Interference in a DS-OCDMA System via Two-Photon Absorption., 2007,,.		3
241	Delay-gain decoupling in Brillouin-assisted slow light. Optics Letters, 2007, 32, 2701.	3.3	3
242	Distributed-Phase OCDMA Encoder–Decoders Based on Fiber Bragg Gratings. IEEE Photonics Technology Letters, 2007, 19, 574-576.	2.5	3
243	Low Walk-Off Kerr-Shutter Using a Dispersion-Shifted Lead Silicate Holey Fiber. IEEE Photonics Technology Letters, 2007, 19, 1112-1114.	2.5	3
244	Developing Single-Mode Tellurite Glass Holey Fiber for Infrared Nonlinear Applications. Advances in Science and Technology, 0, , .	0.2	3
245	OTDM add-drop multiplexer using a saw-tooth pulse shaper. , 2008, , .		3
246	2R/3R optical grooming switch with time-slot interchange. , 2008, , .		3
247	Investigation of Timing Jitter Reduction in a bidirectional 2R All-Optical Mamyshev Regenerator. , 2008, , .		3
248	Nonlinear Optical Thresholding in a 4-Channel OCDMA System via Two-Photon Absorption. , 2009, , .		3
249	A single-mode, high index-contrast, lead silicate glass fibre with high nonlinearity, broadband near-zero dispersion at telecommunication wavelengths. , 2010, , .		3
250	Multi-Element Fibre for Space-Division Multiplexed Transmission. , 2013, , .		3
251	$100\mbox{GHz}$ Grid-Aligned Reconfigurable Polarization Insensitive Black-Box Wavelength Converter. , $2013,$, .		3
252	Polarization Insensitive Wavelength Conversion of 40 Gb/s DPSK Signals in a Silicon Germanium Waveguide. , 2015, , .		3

#	Article	IF	Citations
253	Optical Phase Conjugation for Simultaneous Dispersion and Nonlinearity Compensation Performed over an 800-km long Field-installed Transmission Link. , 2017, , .		3
254	Broadband Study of Inter-Modal Bragg Scattering Four Wave Mixing in Multi-Mode Fibres. , 2018, , .		3
255	Self-Pumping Saturated Four Wave Mixing Through Harmonic Synthesis. , 2019, , .		3
256	Reach extension of PAM4 signals in O-band transmission by application of alternate-mark-inversion. , 2019, , .		3
257	Phase Preserving Amplitude Saturation Through Tone Synthesis Assisted Saturated Four-Wave Mixing. Journal of Lightwave Technology, 2020, 38, 1817-1826.	4.6	3
258	Passively Mode-Locked Fiber Laser Incorporating Adaptive Filtering and Dispersion Management. , 2013, , .		3
259	Optical Phase Conjugation in Installed Optical Networks. , 2018, , .		3
260	Phase-Encoded Signal Regeneration Exploiting Phase Sensitive Amplification., 2011,,.		3
261	Characterization of the Chirp of Silicon Optical Modulators. , 2012, , .		3
262	AMI for Nonlinearity Mitigation in O-Band Transmission. , 2019, , .		3
263	High performance, 64 -chip, 160 Gchip/s fiber grating based OCDMA receiver incorporating a nonlinear optical loop mirror., 0 ,,.		3
264	The light-induced structural phase transition in confining gallium and its photonic applications. Journal of Luminescence, 2000, 87-89, 646-648.	3.1	2
265	High Nonlinearity Holey Fibers: Design, Fabrication and Applications. , 0, , .		2
266	A Reconfigurable Optical Header Recognition System for Optical Packet Routing Applications. IEEE Photonics Technology Letters, 2006, 18, 2395-2397.	2.5	2
267	Nonlinearity and dispersion control in small core lead silicate holey fibers by structured element stacking. , 2006, , .		2
268	A 2-m-long reshaping regenerator based on a highly nonlinear bismuth oxide fiber. , 2006, , .		2
269	Fibre Bragg Grating Based Continuous-Phase Encoder-Decoders for OCDMA Networks. , 2006, , .		2
270	Full Characterisation of Low Power Picosecond Pulses From a Gain-Switched Diode Laser using Electro-Optic Modulation Based FROG. , 2007, , .		2

#	Article	IF	CITATIONS
271	Multi-wavelength all-optical regeneration. , 2008, , .		2
272	2R regeneration architectures based on multi-segmented fibres. , 2008, , .		2
273	Periodic Signal Processing Using a Brillouin Gain Comb. , 2008, , .		2
274	Multi-wavelength all-optical regeneration techniques. , 2009, , .		2
275	Generation of compressed optical pulses beyond 160 GHz based on two injection-locked CW lasers. , 2010, , .		2
276	Elimination of the chirp of optical pulses through cascaded nonlinearities in periodically poled lithium niobate waveguides. Optics Letters, 2010, 35, 3724.	3.3	2
277	Generation of ultra-high repetition rate pulses in a highly nonlinear dispersion-tailored compound glass fibre. , 2010, , .		2
278	Phase sensitive amplifiers for regeneration of phase encoded optical signal formats., 2011,,.		2
279	All-Optical Regeneration of Phase Encoded Signals. , 2013, , 589-639.		2
280	Multi-element fiber for space-division multiplexing. , 2013, , .		2
281	Tailored Waveform Generation in Mode-Locked Fiber Lasers by In-Cavity Pulse Shaper. , 2014, , .		2
282	Highly Nonlinear Tellurite Glass Fiber for Broadband Applications. , 2014, , .		2
283	Signal Regeneration Techniques for Advanced Modulation Formats. , 2014, , .		2
284	Phase and amplitude regeneration through sequential PSA and FWM saturation in HNLF., 2015,,.		2
285	On the role of signal-pump ratio in FWM-based phase preserving amplitude regeneration. , 2015, , .		2
286	Spectrally Efficient DMT Transmission over 40 km SMF Using an Electrically Packaged Silicon Photonic Intensity Modulator., 2017,,.		2
287	Polarization Insensitive Wavelength Conversion in a Few Mode Fibre. , 2017, , .		2
288	All-optical Wavelength Conversion of Phase-encoded Signals in Silicon-rich Silicon Nitride Waveguides. , 2018, , .		2

#	Article	IF	Citations
289	Detailed phase matching characterization of inter-modal four-wave mixing in a two-mode fiber. , 2016, , .		2
290	Experimental Characterization of Bismuth-Doped Fibre Amplifier: Electrical NF, PDG, and XGM., 2020, , .		2
291	Multichannel Wavelength Conversion of 40Gbit/s NRZ DPSK Signals in a Highly Nonlinear Dispersion Flattened Lead Silicate Fibre. , 2010, , .		2
292	Advances in Optical Signal Processing Based on Phase Sensitive Parametric Mixing., 2012,,.		2
293	All-Optical Pulse Retiming Based on Quadratic Cascading in a Periodically Poled Lithium Niobate Waveguide. , 2010, , .		2
294	Robust design of all-optical PSK regenerator based on phase sensitive amplification. , 2011, , .		2
295	Investigation into the Role of Pump to Signal Power Ratio in FWM-based Phase Preserving Amplitude Regeneration. , 2015, , .		2
296	Optical Regeneration. Springer Series in Optical Sciences, 2015, , 129-155.	0.7	2
297	Nonlinearity Mitigation for Multi-channel 64-QAM Signals in a Deployed Fiber Link through Optical Phase Conjugation. , 2016, , .		2
298	Silicon Grating Coupler for Mode Order Conversion. , 2019, , .		2
299	Comparative Investigations between SSMF and Hollow-core NANF for Transmission in the S+C+L-bands. , 2020, , .		2
300	Coherent control of short pulses using fibre Bragg gratings., 1999,,.		1
301	Dynamics of the light-induced structural phase transition in confining gallium and associated gigantic optical nonlinearity., 0,,.		1
302	Broadband optical switching in confined gallium at milliwatt power levels. , 0, , .		1
303	A direct assessment of the performance of pulse shaping superstructured fiber gratings using an optical sampling oscilloscope., 0,,.		1
304	Single-mode high-index-core one-dimensional microstructured fiber with high nonlinearity. , 2005, , .		1
305	Linear frequency resolved optical gating as a line monitoring tool. , 2006, , .		1
306	Rapidly reconfigurable phase code generation and recognition using fiber Bragg gratings., 2006,,.		1

#	Article	IF	CITATIONS
307	Processing Ultrafast Optical Signals in Broadband Telecom Systems by means of Cascaded Quadratic Nonlinearities. , 2006, , .		1
308	Parabolic Pulse Generation through Passive Reshaping of Gaussian Pulses in a Normally Dispersive Fiber., 2007,,.		1
309	Advances in Fibre Based Pulse Shaping Technology and its Applications in Optical Communications., 2007,,.		1
310	Analysis of the Dynamic Responses of SOA Wavelength Converters Using Linear Frequency Resolved Gating Technique. IEEE Photonics Technology Letters, 2008, 20, 1079-1081.	2.5	1
311	Dispersion management in highly nonlinear, carbon disulfide filled holey fibres. , 2008, , .		1
312	Timing jitter tolerant OTDM demultiplexing using a saw-tooth pulse shaper. , 2008, , .		1
313	Broadband supercontinuum using single-mode/dual-mode tellurite glass holey fibers with large mode area. , 2008, , .		1
314	Applications of superstructured fibre Bragg gratings in all-optical signal processing. , 2009, , .		1
315	Highly nonlinear non-silica glass microstructured optical fibers with near-zero dispersion and dispersion slope for 1.55µm applications. , 2009, , .		1
316	Efficient all-optical wavelength converter using saw-tooth pulses. , 2009, , .		1
317	An all-optical grooming switch with regenerative capabilities. , 2009, , .		1
318	All-optical phase and amplitude regeneration properties of a 40Gbit/s DPSK black-box phase sensitive amplifier. , 2010, , .		1
319	ICT BONE views on the Network of the Future: The role of Optical Networking. , 2010, , .		1
320	Applications of highly nonlinear dispersion tailored lead silicate fibres for high speed optical communications. , 2010 , , .		1
321	All-optical regeneration based on phase sensitive amplification. , 2011, , .		1
322	Silicon germanium platform enabling mid-infrared to near-infrared conversion for telecom and sensing applications. , 2014, , .		1
323	Multi-element Fiber for space-division multiplexed optical communication system. , 2014, , .		1
324	Telecom to Mid-infrared Supercontinuum Generation in a Silicon Germanium Waveguide. , 2015, , .		1

#	Article	IF	Citations
325	Minimizing inter-channel cross-phase modulation with optical phase conjugation in asymmetric fibre links. Optics Express, 2016, 24, 20270.	3.4	1
326	Silicon photonic Mach Zehnder modulators for next-generation short-reach optical communication networks. , 2016 , , .		1
327	Dissipative optical switch for coherent fibre networks with 100 THz bandwidth. , 2017, , .		1
328	Inter-Modal Wavelength Conversion in Silicon Waveguide. , 2018, , .		1
329	Low-Temperature NH3-Free Silicon Nitride Platforms for Integrated Photonics. , 2018, , .		1
330	Spectral Difference Interferometry for the Characterization of Optical Media. Laser and Photonics Reviews, 2019, 13, 1900007.	8.7	1
331	Beyond 100-Gb/s/î» direct-detection transmission over the S+C+L-bands in an ultra-wide bandwidth hollow core fibre. , 2019, , .		1
332	Nonlinear control of coherent absorption and its optical signal processing applications. APL Photonics, 2019, 4, 106109.	5.7	1
333	Performance-enhanced Amplified O-band WDM Transmission using Machine Learning based Equalization. , 2021, , .		1
334	All-Optical Phase Regeneration in a Highly Nonlinear Lead-Silicate Fiber. , 2012, , .		1
335	All-Optical broadband phase noise emulation. , 2012, , .		1
336	Recent Advances in Highly Nonlinear Microstructured Optical Fibers and their Applications. , 2008, , .		1
337	Phase Sensitive Amplification in a Highly Nonlinear Lead-Silicate Fibre. , 2011, , .		1
338	Phase-Sensitive Wavelength Conversion Based on Cascaded Quadratic Processes in Periodically Poled Lithium Niobate Waveguides. , $2011, \ldots$		1
339	Overcoming Electronic Limits to Optical Phase Measurements with an Optical Phase-only Amplifier. , 2012, , .		1
340	Nonlinear optical properties of ytterbium-doped tantalum pentoxide rib waveguides on silicon at telecom wavelengths. , $2016, , .$		1
341	Flexible Scheme for Measuring Chromatic Dispersion Based on Interference of Frequency Tones. , 2017,		1
342	Field-trial of an all-optical PSK regenerator in a 40 Gbit/s, 38 channel DWDM transmission experiment. , 2011, , .		1

#	Article	IF	Citations
343	An Ultra-Flat Frequency Comb Generated Using Nonlinear Broadening and Adaptive Pulse Shaping. , 2012, , .		1
344	Homodyne Operation of a Phase-only Optical Amplifier. , 2012, , .		1
345	Inspection of Defect-Induced Mode Coupling in Hollow-Core Photonic Bandgap Fibers Using Time-of-Flight. , 2015, , .		1
346	Beyond 100-Gb/s Direct-detection Transmission using an Optical Receiver Co-integrated with a 28-nm CMOS Gain-tunable Fully-differential TIA. , 2020, , .		1
347	Ultra-wideband IM/DD Transmission over Hollow-core Fibres. , 2021, , .		1
348	Passive Q-switching of an erbium fiber laser using nonlinear reflection from a liquefying gallium mirror. , $1998, , .$		0
349	Nonlinearity of liquefying gallium: controlling light with light at milliwatt power levels. , 0, , .		0
350	Light-Induced Structural Phase Transition in Confining Gallium and Associated Gigantic Optical Nonlinearity. Materials Research Society Symposia Proceedings, 1998, 543, 275.	0.1	0
351	Shaping of soliton- into rectangular-pulses using a superstructure fiber Bragg grating., 1999,, AD1.		0
352	GHz-repetition-rate pulse multiplication using a sampled fiber Bragg grating. , 0, , .		0
353	The dynamically light-induced low-reflectivity state in gallium. , 2000, , .		0
354	Measurement of the nonlinear optical phase response of liquefying gallium. , 2000, , .		0
355	A mode-locked ytterbium doped holey fiber. , 2001, , .		O
356	A 10-Gbit/s all-optical code generation and recognition system based on a hybrid approach of optical fiber delay line and superstructure fiber Bragg grating technologies. , 0, , .		0
357	Amplitude and timing jitter reduction using a fiber NOLM incorporating a fiber Bragg grating based pulse shaper. , 2005, , .		O
358	Brillouin suppression through longitudinal structural variation in high nonlinearity silica holey fibers. , 2006, , .		0
359	Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime. , 2006, , .		0
360	Ultra-flat SPM-Broadened Spectra in a Highly Nonlinear Fiber Using a Fiber Bragg Grating Based Parabolic Pulse Shaper., 2006,,.		0

#	Article	IF	CITATIONS
361	35-dB channel suppression in OTDM add-drop multiplexing based on time-frequency signal processing. , $2006,$, .		O
362	Performance evaluation of a compact 10-GHz pulse compressor based on a highly nonlinear Bismuth-Oxide fibre. , 2007, , .		0
363	New Approaches to Extending the Performance of Brillouin Based Slow Light Systems. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
364	Filtered optical frequency comb generator as a stable and tunable short pulse source. , 2008, , .		0
365	Advanced optical processing systems combining linear pulse shapers and fibre-based nonlinear switches., 2008,,.		O
366	Applications of Superstructured Fibre Bragg gratings in optical switching devices. , 2008, , .		0
367	Single-Mode Tellurite Glass Holey Fiber with Extremely Large Mode Area for Infrared Applications. , 2008, , .		0
368	A solid one-dimensional microstructured optical fiber with high nonlinearity and low dispersion at 1.55 \pm x03BC;m. , 2009, , .		0
369	High performance optical processing systems incorporating grating based pulse shaping., 2009,,.		0
370	Simultaneous 2R regeneration of WDM signals in a single optical fibre. , 2009, , .		0
371	Record-Length 10.7 Gb/s Uncompensated Transmission Experiment over Installed Fiber Using Narrow-Filtered Duobinary and a Correlation-Sensitive MLSE-Rx., 2009,,.		0
372	All-optical grooming for 100 Gbit/s ethernet. Proceedings of SPIE, 2010, , .	0.8	0
373	Ultra High Performance Media Multicasting Scheme over Wavelength-Routed Networks. , 2010, , .		0
374	Synthesis of phase-locked counter-phase modulated pumps for SBS-suppressed fiber parametric amplifiers. , 2010, , .		0
375	Elimination of the chirp of optical pulses through cascaded nonlinearities in periodically poled lithium niobate waveguides. , 2010, , .		O
376	Recent advances in highly nonlinear microstructured optical fibers for telecom applications. Proceedings of SPIE, 2010, , .	0.8	0
377	Processing of telecommunication signals using periodically poled lithium niobate waveguides. , 2010, , .		0
378	Phase regeneration of optical signals. , 2011, , .		0

#	Article	IF	CITATIONS
379	All-optical Real-time OFDM Transmitter and Receiver. , 2011, , .		O
380	Phase sensitive parametric mixers for coherent all-optical signal processing. , 2011, , .		0
381	Potential and practical implementations of phase sensitive amplifiers for all-optical signal regeneration., 2011,,.		0
382	Nonlinear sculpturing of optical spectra. , 2012, , .		0
383	High Speed Silicon based optical modulators. , 2012, , .		0
384	Packet compression of complex modulation formats based on coherent optical superposition., 2012,,.		0
385	High performance silicon optical modulators. Proceedings of SPIE, 2012, , .	0.8	0
386	Overcoming Electronic Limits to Optical Phase Measurements with an Optical Phase-only Amplifier. , 2012, , .		0
387	Linear and Nonlinear Properties of SiGe Waveguides at Telecommunication Wavelengths. , 2013, , .		0
388	Signal Regeneration Techniques for Advanced Modulation Formats. , 2013, , .		0
389	Space Division Multiplexing Using Multi-Element Fibers. , 2014, , .		0
390	Advanced implementations of phase sensitive amplifiers. , 2014, , .		0
391	Advanced nonlinear signal processing in silicon-based waveguides. , 2015, , .		0
392	Integrated silicon optical modulators. , 2016, , .		0
393	Foreword to the Special Issue on European Conference on Optical Communications (ECOC 2015). Journal of Lightwave Technology, 2016, 34, 1406-1410.	4.6	0
394	Ultra-low-power silicon photonics wavelength converter for phase-encoded telecommunication signals. Proceedings of SPIE, 2016, , .	0.8	0
395	Data transmissions at 1.98 Â μ m in cm-long SiGe waveguides. , 2017, , .		0
396	Tunable index back end of line platform for enhanced integrated photonics. , 2017, , .		0

#	Article	IF	Citations
397	Field Trial of a Scheme to Overcome Channel Contention using All-Optical Wavelength Conversion., 2017,,.		О
398	Numerical analysis of mode propagation and coupling in multimode fibers. , 2017, , .		0
399	Group IV Compounds Modulators and Mid Index Waveguides for Enhanced CMOS Photonics. , 2018, , .		О
400	Silicon Photonics Wavelength Converter based on Inter-Modal Four Wave Mixing Bragg Scattering. , 2018, , .		0
401	High speed optical transmission at 2 \hat{l} /4m in subwavelength waveguides made of various materials. , 2018, , .		O
402	Mid-Index Silicon Nitride Devices for Enhanced Linear and Non-Linear Photonic Functionalities. , 2019, , .		0
403	Si and Si-Rich Silicon-Nitride Waveguides for Optical Transmissions and Nonlinear Applications Around 2 νm. , 2019, , .		0
404	Mid-Index Silicon Nitride Devices for Enhanced Linear and Non-Linear Photonic Functionalities. , 2019, , .		0
405	Experimental Characterization of Turbo-Coded 20 Gbps Fiber-Wireless-Fiber Optical Links. IEEE Access, 2021, 9, 112726-112732.	4.2	0
406	Allâ€optical control of spatial beam intensity in multimode fibres by polarisation modulation. IET Optoelectronics, 2021, 15, 233-238.	3.3	0
407	High performance, 64-chip, 160 Gchip/s fiber grating based OCDMA receiver incorporating a nonlinear optical loop mirror. , 2001 , , .		0
408	Optical Signal Processing Techniques for Signal Regeneration and Digital Logic. Lecture Notes in Computer Science, 2009, , 49-96.	1.3	0
409	Advanced Fibre Grating Technologies for Application in Next Generation Lasers and Networks. , 2009, , .		0
410	Experimental investigation of a parabolic pulse generation using tapered microstructured optical fibres. , 2010, , .		0
411	All-optical regeneration based on phase sensitive amplification. , 2011, , .		O
412	Experiments on Long-Haul High-Capacity Transmission Systems. Signals and Communication Technology, 2011, , 185-234.	0.5	0
413	160-to-40Gibt/s Time Demultiplexing in a low dispersion Lead-Silicate W-Index Profile Fiber. , 2011, , .		0
414	Field-trial of an all-optical PSK regenerator in a 40 Gbit/s, 38 channel DWDM transmission experiment. , 2011, , .		0

#	Article	IF	CITATIONS
415	Fiber Optical Parametric Amplification of Optical Combs for Enhanced Performance and Functionality. , 2011, , .		O
416	Temporal Multiplexing of Complex Modulation Formats Facilitated by their Coherent Optical Superposition. , 2012, , .		0
417	Transmission Performance of Phase-Preserving Amplitude Regenerator based on Optical Injection Locking. , 2013, , .		O
418	FWM-based Wavelength Conversion in a Silicon Germanium Waveguide. , 2013, , .		0
419	Field Trial Experiment over 1200 km on a 100GHz Grid-Aligned Multi-Channel Black-Box Wavelength Converter. , 2013, , .		O
420	Multi-Element Fiber Technology for High-Capacity Optical Communication Systems. , 2014, , .		0
421	FWM-based Amplitude Limiter Realizing Phase Preservation through Cancellation of SPM Distortions. , 2016, , .		O
422	Applications of nonlinear parametric effects for advanced processing of optical signals., 2016,,.		0
423	Multi-channel all-optical signal processing based on parametric effects. , 2016, , .		O
424	CMOS-compatible Silicon-Rich Nitride Waveguides for Ultrafast Nonlinear Signal Processing. , 2016, , .		0
425	Optical Signal Processing in Silicon-Based Integrated Devices. , 2018, , .		0
426	A Fiberized Metamaterial Device for Ultrafast Control of Coherent Optical Signals. , 2018, , .		0
427	Ultra-Broadband Bragg Scattering Four Wave Mixing in Silicon Rich Silicon Nitride Waveguides. , 2019,		0
428	Apodized silicon photonic grating couplers for mode-order conversion: publisher's note. Photonics Research, 2019, 7, 1221.	7.0	0
429	Amplified O-band direct-detection transmission using bismuth-doped fiber amplifiers. , 2021, , .		0
430	Record Gain, Low Noise Figure, C+L Band Lumped Raman Amplifier. , 2020, , .		0
431	Tapered submicron silicon core fiber for broadband wavelength conversion. , 2020, , .		О
432	Intermodal Four Wave Mixing in Silicon-Rich Silicon Nitride Waveguides. , 2020, , .		0

#	Article	IF	CITATIONS
433	A novel optical receiver for PAM-4 transmission. , 2020, , .		0
434	Experimental Demonstration of 50-Gb/s/Z O-band CWDM Direct-Detection Transmission over 100-km SMF. , 2021, , .		0