Jinsheng Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3150413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N, P, O co-doped carbon filling into carbon nitride microtubes to promote photocatalytic hydrogen production. Science of the Total Environment, 2022, 809, 151114.	8.0	22
2	Enhanced photocatalytic CO2-reduction activity to form CO and CH4 on S-scheme heterostructured ZnFe2O4/Bi2MoO6 photocatalyst. Journal of Colloid and Interface Science, 2022, 608, 2213-2223.	9.4	48
3	Fabrication of hierarchical flower-shaped cobalt silicate spheres with boosting performance for lithium storage. Microporous and Mesoporous Materials, 2022, , 111662.	4.4	3
4	Improved respond speed of thienylene-phenylene electrochromic polymer with pendent double bond structure. Dyes and Pigments, 2022, 198, 110010.	3.7	8
5	Triazine-Based Conjugated Microporous Polymers With Different Linkage Units for Visible Light–Driven Hydrogen Evolution. Frontiers in Chemistry, 2022, 10, 854018.	3.6	11
6	Conjugated microporous polymer derived N, O and S co-doped sheet-like carbon materials as anode materials for high-performance lithium-ion batteries. Journal of the Taiwan Institute of Chemical Engineers, 2022, 134, 104293.	5.3	10
7	Electrochromic behaviors of novel conjugated copolymers based on [1,2,5]thiadiazolo[3,4-g]quinoxaline, carbazole and cyclopentadithiophene units: Multicolor, double-doping and low band gap. Organic Electronics, 2022, 105, 106514.	2.6	5
8	Construction of ternary Z-scheme covalent triazine framework@Au@TiO2 for enhanced visible-light-driven hydrogen evolution activity. International Journal of Hydrogen Energy, 2022, 47, 18334-18346.	7.1	7
9	A heterostructured ZnAl-LDH@ZIF-8 hybrid as a bifunctional photocatalyst/adsorbent for CO2 reduction under visible light irradiation. Chemical Engineering Journal, 2022, 446, 137003.	12.7	27
10	Preparation and electrochemical properties of benzothiadiazole-benzotriazole donor-acceptor conductive polymer lithium-ion anode materials. Synthetic Metals, 2022, 289, 117112.	3.9	8
11	Anchoring NiO Nanosheet on the Surface of CNT to Enhance the Performance of a Li-O2 Battery. Nanomaterials, 2022, 12, 2386.	4.1	2
12	Preparation of D-A-D conjugated polymers based on [1,2,5]thiadiazolo[3,4-c]pyridine and thiophene derivatives and their electrochemical properties as anode materials for lithium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129707.	4.7	8
13	Maroon-green-indigo color switching of thienoisoindigo-based electrochromic copolymers with high optical contrast. Journal of the Taiwan Institute of Chemical Engineers, 2022, 138, 104442.	5.3	6
14	Thienylmethylene Oxindole Based Conjugated Polymers via Direct Arylation Polymerization and Their Electrochromic Properties. Chinese Journal of Polymer Science (English Edition), 2021, 39, 147-153.	3.8	2
15	ZnO/Acrylic Polyurethane Nanocomposite Superhydrophobic Coating on Aluminum Substrate Obtained via Spraying and Co-Curing for the Control of Marine Biofouling. Surfaces and Interfaces, 2021, 22, 100833.	3.0	18
16	Synthesis and characterization of donor–acceptor type quinoxaline-based polymers and the corresponding electrochromic devices with satisfactory open circuit memory. Synthetic Metals, 2021, 271, 116619.	3.9	18
17	The synthesis of alternating donor–acceptor polymers based on pyrene-4,5,9,10-tetraone and thiophene derivatives, their composites with carbon, and their lithium storage performances as anode materials. RSC Advances, 2021, 11, 15044-15053.	3.6	14
18	TiO2 Nanowires with Doped g-C3N4 Nanoparticles for Enhanced H2 Production and Photodegradation of Pollutants. Nanomaterials, 2021, 11, 254.	4.1	5

#	Article	IF	CITATIONS
19	The synthesis of triazine–thiophene–thiophene conjugated porous polymers and their composites with carbon as anode materials in lithium-ion batteries. RSC Advances, 2021, 11, 10688-10698.	3.6	21
20	The synthesis of the D-A-type polymers containing benzo[1,2-b:6,5-bâ€2]dithiophene-4,5-dione unit, their composites with carbon, and the lithium storage performances as electrode materials. Journal of Solid State Electrochemistry, 2021, 25, 1847-1859.	2.5	10
21	Novel Thiadiazolobenzotriazole Based Donor–Acceptor Type Conjugated Polymers as Neutral Green Electrochromic Materials. Macromolecular Chemistry and Physics, 2021, 222, 2100037.	2.2	3
22	Preparation of ZnO Nanoparticle/Acrylic Resin Superhydrophobic Coating via Blending Method and Its Wear Resistance and Antibacterial Properties. Materials, 2021, 14, 3775.	2.9	8
23	Synthesis and characterization of D-A type electrochromic polymers based on planar monomers: Cyclopenta[2,1-b;3,4-b′]dithiophene and tris(thienothiophene) as electron donors, diketopyrrolopyrrole as electron acceptor. Synthetic Metals, 2021, 278, 116839.	3.9	10
24	Synthesis of the novel thienoisoindigo-based donor-acceptor type conjugated polymers and the stable switching performance of purple-to-transparent as the electrochromic materials. Organic Electronics, 2021, 95, 106183.	2.6	11
25	Study on Adsorption Behavior of Nickel Ions Using Silica-Based Sandwich Layered Zirconium-Titanium Phosphate Prepared by Layer-by-Layer Grafting Method. Nanomaterials, 2021, 11, 2314.	4.1	7
26	The Synthesis of a Covalent Organic Framework from Thiophene Armed Triazine and EDOT and Its Application as Anode Material in Lithium-Ion Battery. Polymers, 2021, 13, 3300.	4.5	5
27	Effect of the cross-linker length of thiophene units on photocatalytic hydrogen production of triazine-based conjugated microporous polymers. RSC Advances, 2021, 12, 708-718.	3.6	16
28	Synthesis and characterization of soluble donor-acceptor type copolymers based on benzotriazole, quinoxaline and benzene units with multicolor electrochromism. Organic Electronics, 2020, 77, 105514.	2.6	14
29	Highly Crystallized C-Doped Nickel Oxide Nanoparticles for p-Type Dye-Sensitized Solar Cells with Record Open-Circuit Voltage Breaking 0.5 V. Industrial & Engineering Chemistry Research, 2020, 59, 175-182.	3.7	3
30	Core-shell structured Ni3S2@VO2 nanorods grown on nickel foam as battery-type materials for supercapacitors. Applied Surface Science, 2020, 508, 144876.	6.1	26
31	Rational design of novel isoindigo based donor–acceptor type conjugated polymers with low bandgaps as solution-processed high-performance electrochromic materials. Synthetic Metals, 2020, 270, 116589.	3.9	7
32	Fe-MOF-Derived Efficient ORR/OER Bifunctional Electrocatalyst for Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 44710-44719.	8.0	152
33	Electrochemical performance and storage mechanism study of conjugate donor–acceptor organic polymers as anode materials of lithium-ion battery. Energy Reports, 2020, 6, 2094-2105.	5.1	21
34	Ionic liquid crystal induced morphological control of solid composite polymer electrolyte for lithium-ion batteries. Materials and Design, 2020, 192, 108760.	7.0	22
35	One-step synthesis and Gd3+ decoration of BiOBr microspheres consisting of nanosheets toward improving photocatalytic reduction of CO2 into hydrocarbon fuel. Chemical Engineering Journal, 2020, 400, 125944.	12.7	88
36	A MnO2-based catalyst with H2O resistance for NH3-SCR: Study of catalytic activity and reactants-H2O competitive adsorption. Applied Catalysis B: Environmental, 2020, 270, 118860.	20.2	159

#	Article	IF	CITATIONS
37	Fabrication of NiO-NiMoO4/PPy microspheres as high-performance anode material for lithium-ion battery. Ionics, 2020, 26, 3823-3830.	2.4	5
38	Carbon nitride quantum dots (CNQDs)/TiO2 nanoparticle heterojunction photocatalysts for enhanced ultraviolet-visible-light-driven bisphenol a degradation and H2 production. International Journal of Hydrogen Energy, 2020, 45, 22534-22544.	7.1	30
39	Color tuning for black-to-transmissive conjugated copolymer with excellent electrochromic properties via electrochemical copolymerization of two donor-acceptor type monomers. Materials and Design, 2020, 194, 108903.	7.0	26
40	Ultra-low-band gap thienoisoindigo-based ambipolar type neutral green copolymers with ProDOT and thiophene units as NIR electrochromic materials. Organic Electronics, 2020, 81, 105685.	2.6	19
41	Insights into the role of an Fe–N active site in the oxygen reduction reaction on carbon-supported supramolecular catalysts. RSC Advances, 2020, 10, 8709-8716.	3.6	11
42	La2O3-modified graphite carbon nitride achieving the enhanced photocatalytic degradation of different organic pollutants under visible light irradiation. Materials Chemistry and Physics, 2020, 246, 122846.	4.0	25
43	Soluble neutral green-colored polymers based on propylenedioxythiophene, benzene and thieno[3,4-b]pyrazine, and their electrochromic properties. Synthetic Metals, 2020, 261, 116320.	3.9	16
44	Preparation of CdS Nanoparticles-TiO2 Nanorod Hererojunction and Their High-Performance Photocatalytic Activity. Catalysts, 2020, 10, 441.	3.5	5
45	Preparation and Characterization of Nitrogen-Riched Polymer Based Materials and the Role of Cu–N Active Site in Promoting the ORR Activity of the Catalyst. Catalysis Surveys From Asia, 2020, 24, 219-231.	2.6	6
46	High Pt utilization efficiency of electrocatalysts for oxygen reduction reaction in alkaline media. Catalysis Today, 2019, 332, 101-108.	4.4	28
47	Tuning the morphology of the active layer of organic solar cells by spin 1/2 radicals. New Journal of Chemistry, 2019, 43, 13998-14008.	2.8	4
48	Design of Morphology-Controllable ZnO Nanorods/Nanopariticles Composite for Enhanced Performance of Dye-Sensitized Solar Cells. Nanomaterials, 2019, 9, 931.	4.1	12
49	Synthesis and characterization of D-A type conjugated electrochromic polymers with cross-linked structure employing a novel and multi-functionalized molecular as the acceptor unit. Journal of Electroanalytical Chemistry, 2019, 848, 113276.	3.8	5
50	Design and Characterization of New D–A Type Electrochromic Conjugated Copolymers Based on Indolo[3,2-b]Carbazole, Isoindigo and Thiophene Units. Polymers, 2019, 11, 1626.	4.5	19
51	Synthesis of Flower-Like g-C3N4/BiOBr and Enhancement of the Activity for the Degradation of Bisphenol A Under Visible Light Irradiation. Frontiers in Chemistry, 2019, 7, 649.	3.6	34
52	Fluorometric sensing of pH values using green-emitting black phosphorus quantum dots. Mikrochimica Acta, 2019, 186, 640.	5.0	20
53	Supramolecular Iron Complex Formed Between Nitrogen Riched Phenanthroline Derivative and Iron With Improved Oxygen Reduction Activity in Alkaline Electrolyte. Frontiers in Chemistry, 2019, 7, 622.	3.6	6
54	Isobaric Vapor–Liquid Equilibria of Binary Mixtures of Diethyl Carbonate with Methyl Acetate, <i>n</i> -Propyl Acetate, or Amyl Acetate at 100.17 kPa. Journal of Chemical & Engineering Data, 2019, 64, 2550-2557.	1.9	11

#	Article	IF	CITATIONS
55	Synthesis and electrochromic properties of cross-linked and soluble conjugated polymers based on 5, 8, 14, 17-tetrabromoquinoxaline[2′, 3':9,10]phenanthro[4,5-abc]phenazine as the multifunctionalized acceptor unit. Organic Electronics, 2019, 73, 43-54.	2.6	19
56	One Simple Strategy towards Nitrogen and Oxygen Codoped Carbon Nanotube for Efficient Electrocatalytic Oxygen Reduction and Evolution. Catalysts, 2019, 9, 159.	3.5	9
57	Preparation of N-Doped Carbon Nanosheets from Sewage Sludge for Adsorption Studies of Cr(VI) from Aqueous Solution. Nanomaterials, 2019, 9, 265.	4.1	16
58	Yellow-to-blue switching of indole[3,2-b]carbazole-based electrochromic polymers and the corresponding electrochromic devices with outstanding photopic contrast, fast switching speed, and satisfactory cycling stability. Electrochimica Acta, 2019, 302, 373-384.	5.2	18
59	Synthesis and Characterization of Novel D-A Type Neutral Blue Electrochromic Polymers Containing Pyrrole[3-c]Pyrrole-1,4-Diketone as the Acceptor Units and the Aromatics Donor Units with Different Planar Structures. Polymers, 2019, 11, 2023.	4.5	11
60	A dinuclear cobalt cluster as electrocatalyst for oxygen reduction reaction. RSC Advances, 2019, 9, 42554-42560.	3.6	7
61	Facile construction of a molybdenum disulphide/zinc oxide nanosheet hybrid for an advanced photocatalyst. Journal of Alloys and Compounds, 2019, 778, 761-767.	5.5	16
62	2D Schottky Junction between Graphene Oxide and Transitionâ€Metal Dichalcogenides: Photoresponsive Properties and Electrocatalytic Performance. Advanced Materials Interfaces, 2019, 6, 1801657.	3.7	13
63	Synthesis and electrochromic properties of electrochromic polymers based on propylenedioxythiophene, diketopyrrolopyrrole and benzodithiophene units. Organic Electronics, 2019, 64, 223-235.	2.6	37
64	Earth-abundant Fe _{1â^'x} S@S-doped graphene oxide nano–micro composites as high-performance cathode catalysts for green solar energy utilization: fast interfacial electron exchange. RSC Advances, 2018, 8, 4340-4347.	3.6	13
65	Tuning band gap, color switching, optical contrast, and redox stability in solution-processable BDT-based electrochromic materials. Organic Electronics, 2018, 54, 94-103.	2.6	29
66	Aqueous Solution-Processed Multifunctional SnO2 Aggregates for Highly Efficient Dye-Sensitized Solar Cells. Industrial & Engineering Chemistry Research, 2018, 57, 7136-7145.	3.7	11
67	Effects of Pyrazine Derivatives and Substituted Positions on the Photoelectric Properties and Electromemory Performance of D–A–D Series Compounds. Materials, 2018, 11, 2063.	2.9	9
68	Design of SnO2 Aggregate/Nanosheet Composite Structures Based on Function-Matching Strategy for Enhanced Dye-Sensitized Solar Cell Performance. Materials, 2018, 11, 1774.	2.9	9
69	The synthesis of phenanthroline and bipyridine based ligand for the preparation of Fe-Nx/C type electrocatalyst for oxygen reduction. International Journal of Hydrogen Energy, 2018, 43, 21810-21823.	7.1	18
70	Band-Gap Tuning of Organic–Inorganic Hybrid Palladium Perovskite Materials for a Near-Infrared Optoelectronics Response. ACS Omega, 2018, 3, 13960-13966.	3.5	29
71	Synthesis, Crystal Structure, UV–Vis Adsorption Properties, Photoelectric Behavior, and DFT Computational Study of All-Inorganic and Lead-Free Copper Halide Salt K ₂ Cu ₂ Cl ₆ . ACS Omega, 2018, 3, 14021-14026.	3.5	17
72	Tuning Ni-Foam into NiOOH/FeOOH Heterostructures toward Superior Water Oxidation Catalyst via Three-Step Strategy. ACS Omega, 2018, 3, 11009-11017.	3.5	29

#	Article	IF	CITATIONS
73	Synthesis and characterization of novel donor–acceptor type electrochromic polymers containing diketopyrrolopyrrole as an acceptor and propylenedioxythiophene or indacenodithiophene as a donor. RSC Advances, 2018, 8, 23119-23129.	3.6	14
74	Boosting the capacitance of NiCo2O4 hierarchical structures on nickel foam in supercapacitors. International Journal of Hydrogen Energy, 2018, 43, 15348-15357.	7.1	21
75	Benzothiadiazole, hexylthiophen and alkoxy benzene based solution processable copolymer: Effect of the electron withdrawing substituents (fluorine atoms) on electrochemical, optical and electrochromic properties. Organic Electronics, 2018, 61, 1-9.	2.6	23
76	Donor-Acceptor-Type Copolymers Based on 3,4-Propylenedioxy-thiophene and 5,6-Difluorobenzotriazole: Synthesis and Electrochromic Properties. Polymers, 2018, 10, 427.	4.5	15
77	Au Cu alloys deposited on titanium dioxide nanosheets for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 15155-15163.	7.1	19
78	Carbon-Supported Copper-Based Nitrogen-Containing Supramolecule as an Efficient Oxygen Reduction Reaction Catalyst in Neutral Medium. Catalysts, 2018, 8, 53.	3.5	26
79	The Effects of Coordinated Molecules of Two Gly-Schiff Base Copper Complexes on Their Oxygen Reduction Reaction Performance. Catalysts, 2018, 8, 156.	3.5	6
80	Carbon Supported Multi-Branch Nitrogen-Containing Polymers as Oxygen Reduction Catalysts. Catalysts, 2018, 8, 245.	3.5	14
81	Effects of Fluoro Substitution on the Electrochromic Performance of Alternating Benzotriazole and Benzothiadiazole-Based Donor–Acceptor Type Copolymers. Polymers, 2018, 10, 23.	4.5	11
82	Soluble Electrochromic Polymers Incorporating Benzoselenadiazole and Electron Donor Units (Carbazole or Fluorene): Synthesis and Electronic-Optical Properties. Polymers, 2018, 10, 450.	4.5	25
83	Titanium dioxide nano-heterostructure with nanoparticles decorating nanowires for high-performance photocatalysis. International Journal of Hydrogen Energy, 2018, 43, 10359-10367.	7.1	18
84	Low defects, large area and high stability of all-inorganic lead halide perovskite CsPbBr ₃ thin films with micron-grains <i>via</i> heat-spraying process for self-driven photodetector. RSC Advances, 2018, 8, 29089-29095.	3.6	21
85	Synthesis and characterization of novel donor–acceptor type neutral green electrochromic polymers containing an indolo[3,2- <i>b</i>]carbazole donor and diketopyrrolopyrrole acceptor. RSC Advances, 2018, 8, 21252-21264.	3.6	25
86	The optimization of donor-to-acceptor feed ratios with the aim of obtaining black-to-transmissive switching polymers based on isoindigo as the electron-deficient moiety. RSC Advances, 2017, 7, 11840-11851.	3.6	36
87	Soluble conjugated polymer enriched with pyridinic nitrogen atoms and its application as high-performance catalyst for oxygen reduction. Journal of Solid State Electrochemistry, 2017, 21, 1639-1651.	2.5	9
88	Poly (10,12-bis(4-hexylthiophen-2-yl)thieno[3′,4′:5,6]pyrazino[2,3- f][1,10] – phenanthroline)-coppler(II) complex as an efficient electrocatalyst for oxygen reduction. Chemical Engineering Journal, 2017, 316, 680-691.	12.7	27
89	Effects of the acceptor pattern and substitution position on the properties of N-phenyl-carbazolyl based donor–acceptor–donor molecules. RSC Advances, 2017, 7, 18189-18198.	3.6	10
90	Synthesis and electrochemical capacitive performance of thieno[3,4-b]pyrazine-based Donor-Acceptor type copolymers used as supercapacitor electrode material. Electrochimica Acta, 2017, 238, 36-48.	5.2	31

#	Article	IF	CITATIONS
91	Isobaric Vapor–Liquid Equilibrium for Binary System of Tetrahydrofuran + 1,4-Butanediol and gamma-Butyrolactone at 50.0 and 70.0 kPa. Journal of Chemical & Engineering Data, 2017, 62, 3872-3877.	1.9	5
92	Lead-free and amorphous organic–inorganic hybrid materials for photovoltaic applications: mesoscopic CH3NH3MnI3/TiO2 heterojunction. RSC Advances, 2017, 7, 37419-37425.	3.6	24
93	High-efficient one-pot synthesis of carbon quantum dots decorating Bi2MoO6 nanosheets heterostructure with enhanced visible-light photocatalytic properties. Journal of Alloys and Compounds, 2017, 723, 333-344.	5.5	68
94	From two-dimensional graphene oxide to three-dimensional honeycomb-like Ni ₃ S ₂ @graphene oxide composite: insight into structure and electrocatalytic properties. Royal Society Open Science, 2017, 4, 171409.	2.4	14
95	Synthesis, Characterization and Application of Four Novel Electrochromic Materials Employing Nitrotriphenylamine Unit as the Acceptor and Different Thiophene Derivatives as the Donor. Polymers, 2017, 9, 173.	4.5	15
96	The Availability of Neutral Cyan, Green, Blue and Purple Colors from Simple D–A Type Polymers with Commercially Available Thiophene Derivatives as the Donor Units. Polymers, 2017, 9, 656.	4.5	10
97	Multichromic Polymers Containing Alternating Bi(3-Methoxythiophene) and Triphenylamine Based Units with Para-Protective Substituents. Materials, 2016, 9, 779.	2.9	7
98	Low Band Gap Donor–Acceptor Type Polymers Containing 2,3-Bis(4-(decyloxy)phenyl)pyrido[4,3-b]pyrazine as Acceptor and Different Thiophene Derivatives as Donors. Polymers, 2016, 8, 377.	4.5	9
99	Substituent effect of a donor unit on electrochemical and opto-electronic properties of ambipolar benzotriazole-based polymers. Iranian Polymer Journal (English Edition), 2016, 25, 443-454.	2.4	3
100	Layered and Pb-Free Organic–Inorganic Perovskite Materials for Ultraviolet Photoresponse: (010)-Oriented (CH ₃ NH ₃) ₂ MnCl ₄ Thin Film. ACS Applied Materials & Interfaces, 2016, 8, 28187-28193.	8.0	54
101	A new electrochromic copolymer which switched between neutral black and oxidized transmissive. RSC Advances, 2016, 6, 80002-80010.	3.6	15
102	Two New Bithiophenes Derivatives Multielectrochromic Copolymer Based on Triphenylamine Unit and Their Application for Electrochromic Devices. Bulletin of the Korean Chemical Society, 2016, 37, 1234-1243.	1.9	2
103	Optimized Zn ₂ SnO ₄ nanoparticles with enhanced performance for photodetectors and photocatalysts. RSC Advances, 2016, 6, 69191-69195.	3.6	11
104	Synthesis and characterization of donor–acceptor type conducting polymers containing benzotriazole acceptor and benzodithiophene donor or s-indacenodithiophene donor. RSC Advances, 2016, 6, 94014-94023.	3.6	21
105	Decyloxyphenyl-substituted quinoxaline-embedded conjugated electrochromic polymers with high switching stability and fast response speed. Chinese Journal of Polymer Science (English Edition), 2016, 34, 407-419.	3.8	7
106	Facile Synthesis and High Capacitive Performance of 3D Hierarchical Ni(OH)2 Microspheres. Electrochimica Acta, 2016, 196, 84-91.	5.2	45
107	Donor–acceptor type polymers containing the 2,3-bis(2-pyridyl)-5,8-dibromoquinoxaline acceptor and different thiophene donors: electrochemical, spectroelectrochemistry and electrochromic properties. New Journal of Chemistry, 2016, 40, 2178-2188.	2.8	27
108	Comparative Study on the Influence of TiO2 Precursors on ZnO-Based Dye-Sensitized Solar Cells. Industrial & Engineering Chemistry Research, 2015, 54, 12639-12645.	3.7	15

#	Article	IF	CITATIONS
109	The synthesis of new donor–acceptor polymers containing the 2,3-di(2-furyl) quinoxaline moiety: Fast-switching, low-band-gap, p- and n-dopable, neutral green-colored materials. Electrochimica Acta, 2015, 160, 271-280.	5.2	35
110	Two novel ambipolar donor–acceptor type electrochromic polymers with the realization of RGB (red-green-blue) display in one polymer. RSC Advances, 2014, 4, 61537-61547.	3.6	23
111	Effects of alkyl or alkoxy side chains on the electrochromic properties of four ambipolar donor–acceptor type polymers. RSC Advances, 2014, 4, 52712-52726.	3.6	28
112	Donor–acceptor type neutral green polymers containing 2,3-di(5-methylfuran-2-yl) quinoxaline acceptor and different thiophene donors. Electrochimica Acta, 2014, 125, 241-249.	5.2	50
113	Ethylene glycol stabilized NaBH4 reduction for preparation carbon-supported Pt–Co alloy nanoparticles used as oxygen reduction electrocatalysts for microbial fuel cells. Journal of Solid State Electrochemistry, 2014, 18, 1087-1097.	2.5	26
114	Multichromic polymers containing alternating bithiophenes derivatives and 4-cyanotriphenylamine unit and their application for electrochromic devices. Journal of Electroanalytical Chemistry, 2014, 714-715, 1-10.	3.8	7
115	Two New Near-Infrared Switchable Electrochromic Bithiophenes Derivatives Based on 4-Methoxytriphenylamine Unit and Their Application for Electrochromic Devices. ECS Journal of Solid State Science and Technology, 2014, 3, R121-R130.	1.8	5
116	Three donor-acceptor polymeric electrochromic materials employing 2,3-bis(4-(decyloxy)phenyl)pyrido[4,3-b]pyrazine as acceptor unit and thiophene derivatives as donor units. Electrochimica Acta, 2014, 146, 231-241.	5.2	52
117	Glycerol-stabilized NaBH4 reduction at room-temperature for the synthesis of a carbon-supported PtxFe alloy with superior oxygen reduction activity for a microbial fuel cell. Electrochimica Acta, 2014, 141, 331-339.	5.2	42
118	Electrosynthesis and characterization of an electrochromic material from poly(1,6â€bis(2â€thienyl)pyrene) and its application in electrochromic device. Journal of Applied Polymer Science, 2014, 131, .	2.6	2
119	Carbon supported polyindole-5-carboxylic acid covalently bonded with pyridine-2,4-diamine copper complex as a non-precious oxygen reduction catalyst. Electrochimica Acta, 2014, 143, 1-9.	5.2	19
120	Electrosynthesis and characterization of a donor–acceptor type electrochromic material from poly(4,7-dicarbazol-9-yl-2,1,3-benzothiadia-zole) and its application in electrochromic devices. Thin Solid Films, 2013, 527, 232-238.	1.8	12
121	Electrochemical synthesis and investigation of poly(1,4-bis(2-(3,4-ethylenedioxy)thienyl)benzene) and its application in an electrochromic device. Journal of Solid State Electrochemistry, 2012, 16, 3805-3815.	2.5	14
122	Star-shaped conjugated systems derived from thienyl-derivatized poly(triphenylamine)s as active materials for electrochromic devices. Journal of Electroanalytical Chemistry, 2012, 677-680, 24-30.	3.8	54
123	Triphenylamine-based multielectrochromic material and its neutral green electrochromic devices. Journal of Electroanalytical Chemistry, 2012, 682, 29-36.	3.8	37
124	Electrosynthesis and characterization of a novel electrochromic copolymer of N-methylpyrrole with cyclopenta[2,1-b:3,4-b′]dithiophene. Polymer Journal, 2012, 44, 1048-1055.	2.7	8
125	Electrosynthesis and characterization of a new multielectrochromic copolymer of 1,4â€bis(2â€thienyl) benzene with 3,4â€ethylenedioxythiophene. Journal of Applied Polymer Science, 2012, 125, 3591-3601.	2.6	3
126	Electrochemical synthesis, characterization and electrochromic properties of a copolymer based on 1,4-bis(2-thienyl)naphthalene and pyrene. Optical Materials, 2012, 34, 1095-1101.	3.6	16

#	Article	IF	CITATIONS
127	Effects of Acid Treatment of Ptâ^'Ni Alloy Nanoparticles@Graphene on the Kinetics of the Oxygen Reduction Reaction in Acidic and Alkaline Solutions. Journal of Physical Chemistry C, 2011, 115, 379-389.	3.1	138
128	Electrosynthesis and characterization of an electrochromic material from poly(1,4-bis(2-thienyl)-benzene) and its application in electrochromic devices. Electrochimica Acta, 2011, 56, 2815-2822.	5.2	39
129	Evaluation of the pyrolytic and kinetic characteristics of Enteromorpha prolifera as a source of renewable bio-fuel from the Yellow Sea of China. Chemical Engineering Research and Design, 2010, 88, 647-652.	5.6	89
130	Electrochemical determination of diphenols and their mixtures at the multiwall carbon nanotubes/poly (3-methylthiophene) modified glassy carbon electrode. Mikrochimica Acta, 2010, 169, 277-282.	5.0	56
131	The Mediated Electrochemical Method for Rapid Fermentation Ability Assessment. Electroanalysis, 2008, 20, 1587-1592.	2.9	17
132	The inhibition of Saccharomyces cerevisiae cells by acetic acid quantified by electrochemistry and fluorescence. Bioelectrochemistry, 2008, 72, 117-121.	4.6	15
133	INTEGRATED PROCESS FOR ISOLATION AND COMPLETE UTILIZATION OF RICE STRAW COMPONENTS THROUGH SEQUENTIAL TREATMENT. Chemical Engineering Communications, 2008, 195, 1176-1183.	2.6	6
134	The interaction mechanisms between Saccharomyces cerevisiae and menadione and its application in toxicology study. Talanta, 2008, 74, 1686-1691.	5.5	5
135	Consistency of the Mediated Electrochemical Method and the Fluorescence Method in Monitoring the Catabolic Activities of Yeasts. Analytical Letters, 2008, 41, 2963-2971.	1.8	2
136	The different behaviors of three oxidative mediators in probing the redox activities of the yeast Saccharomyces cerevisiae. Analytica Chimica Acta, 2007, 597, 67-74.	5.4	33
137	Microelectrode Electrochemistry in Microemulsion Systems. Analytical Letters, 2006, 39, 1801-1808.	1.8	2