Tomasz Jurczak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3150362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interspecific allelopathy in cyanobacteria: Cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa. Harmful Algae, 2014, 35, 1-8.	4.8	122
2	Establishment of an Alert Level Framework for cyanobacteria in drinking water resources by using the Algae Online Analyser for monitoring cyanobacterial chlorophyll a. Water Research, 2009, 43, 989-996.	11.3	108
3	Measurement of phycocyanin fluorescenceas an online early warning system for cyanobacteria in reservoir intake water. Environmental Toxicology, 2005, 20, 425-430.	4.0	98
4	Elimination of microcystins by water treatment processes—examples from Sulejow Reservoir, Poland. Water Research, 2005, 39, 2394-2406.	11.3	92
5	Distribution of Hepatotoxic Cyanobacterial Blooms in Belgium and Luxembourg. Hydrobiologia, 2005, 551, 99-117.	2.0	71
6	Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. Environmental Science and Pollution Research, 2013, 20, 5243-5264.	5.3	70
7	First report of the cyanobacterial toxin cylindrospermopsin in the shallow, eutrophic lakes of western Poland. Chemosphere, 2009, 74, 669-675.	8.2	66
8	Effect of microcystin-LR and cyanobacterial extract from polish reservoir of drinking water on cell cycle progression, mitotic spindle, and apoptosis in CHO-K1 cells. Toxicology and Applied Pharmacology, 2003, 189, 204-213.	2.8	63
9	The multidisciplinary approach to safety and toxicity assessment of microalgae-based food supplements following clinical cases of poisoning. Harmful Algae, 2015, 46, 34-42.	4.8	55
10	Summer changes in cyanobacterial bloom composition and microcystin concentration in eutrophic Czech reservoirs. Environmental Toxicology, 2006, 21, 236-243.	4.0	52
11	Detection and monitoring toxigenicity of cyanobacteria by application of molecular methods. Environmental Toxicology, 2006, 21, 380-387.	4.0	49
12	Hybrid system for the purification of street stormwater runoff supplying urban recreation reservoirs. Ecological Engineering, 2018, 110, 67-77.	3.6	40
13	Hepatotoxic cyanobacterial blooms in the lakes of northern Poland. Environmental Toxicology, 2005, 20, 499-506.	4.0	36
14	Microcystin assimilation and detoxification by Daphnia spp. in two ecosystems of different cyanotoxin concentrations. Journal of Limnology, 2013, 72, 13.	1.1	35
15	Role of Environmental Factors and Toxic Genotypes in the Regulation of Microcystins-Producing Cyanobacterial Blooms. Microbial Ecology, 2014, 67, 465-479.	2.8	34
16	Preliminary molecular identification of cylindrospermopsin-producing Cyanobacteria in two Polish lakes (Central Europe). FEMS Microbiology Letters, 2012, 326, 173-179.	1.8	30
17	Oxidative Stress, Programmed Cell Death and Microcystin Release in Microcystis aeruginosa in Response to Daphnia Grazers. Frontiers in Microbiology, 2020, 11, 1201.	3.5	29
18	Ecohydrological system solutions to enhance ecosystem services: the Pilica River Demonstration Project. Ecohydrology and Hydrobiology, 2009, 9, 13-39.	2.3	28

Tomasz Jurczak

#	Article	IF	CITATIONS
19	Biomonitoring Of Cyanobacterial Blooms In Polish Water Reservoir And The Cytotoxicity And Genotoxicity Of Selected Cyanobacterial Extracts. International Journal of Occupational Medicine and Environmental Health, 2007, 20, 48-65.	1.3	25
20	Effects of microcystins-containing cyanobacteria from a temperate ecosystem on human lymphocytes culture and their potential for adverse human health effects. Harmful Algae, 2011, 10, 356-365.	4.8	25
21	Perennial toxigenic <i>Planktothrix agardhii</i> bloom in selected lakes of Western Poland. Environmental Toxicology, 2011, 26, 10-20.	4.0	25
22	Polyphasic toxicological screening of Cylindrospermopsis raciborskii and Aphanizomenon gracile isolated in Poland. Algal Research, 2017, 24, 72-80.	4.6	22
23	The Stream Inlet to a Shallow Bay of a Drinking Water Reservoir, a â€~Hot‣pot' for <i>Microcystis</i> Blooms Initiation. International Review of Hydrobiology, 2008, 93, 257-268.	0.9	19
24	Effects of <i>Daphnia</i> exudates and sodium octyl sulphates on filament morphology and cell wall thickness of <i>Aphanizomenon gracile</i> (Nostocales), <i>Cylindrospermopsis raciborskii</i> (Nostocales) and <i>Planktothrix agardhii</i> (Oscillatoriales). European Journal of Phycology, 2018, 53, 280-289.	2.0	16
25	Incidence of microcystinâ€producing cyanobacteria in Lake Tana, the largest waterbody in Ethiopia. African Journal of Ecology, 2015, 53, 54-63.	0.9	15
26	Response of Daphnia's Antioxidant System to Spatial Heterogeneity in Cyanobacteria Concentrations in a Lowland Reservoir. PLoS ONE, 2014, 9, e112597.	2.5	14
27	First report of cyanobacterial paralytic shellfish toxin biosynthesis genes and paralytic shellfish toxin production in Polish freshwater lakes. Advances in Oceanography and Limnology, 2017, 8, .	0.6	13
28	A report of Cylindrospermopsis raciborskii and other cyanobacteria in the water reservoirs of power plants in Ukraine. Environmental Science and Pollution Research, 2018, 25, 15245-15252.	5.3	13
29	Ecohydrology and adaptation to global change. Ecohydrology and Hydrobiology, 2021, 21, 393-410.	2.3	13
30	Comprehensive approach to restoring urban recreational reservoirs. Part 2 – Use of zooplankton as indicators for the ecological quality assessment. Science of the Total Environment, 2019, 653, 1623-1640.	8.0	12
31	Comprehensive approach to restoring urban recreational reservoirs. Part 1 – Reduction of nutrient loading through low-cost and highly effective ecohydrological measures. Ecological Engineering, 2019, 131, 81-98.	3.6	12
32	Increase of crustacean sensitivity to purified hepatotoxic cyanobacterial extracts by manipulation of experimental conditions. Environmental Toxicology, 2004, 19, 416-420.	4.0	11
33	Temporal variation in microcystin production by <i>Planktothrix agardhii</i> (Gomont) Anagnostidis and KomĄ̃įrek (Cyanobacteria, Oscillatoriales) in a temperate lake. Annales De Limnologie, 2011, 47, 363-371.	0.6	11
34	Application of cellular biosensors for detection of atypical toxic bioactivity in microcystin-containing cyanobacterial extracts. Aquatic Toxicology, 2015, 168, 1-10.	4.0	11
35	Restoration of a shady urban pond – The pros and cons. Journal of Environmental Management, 2018, 217, 919-928.	7.8	11
36	University's multi-scale initiatives for redefining city development. International Journal of Sustainability in Higher Education, 2017, 18, 50-62.	3.1	10

TOMASZ JURCZAK

#	Article	IF	CITATIONS
37	Night fish avoidance of Microcystis bloom revealed by simultaneous hydroacoustic measurements of both organisms. Fisheries Research, 2018, 207, 74-84.	1.7	10

The role of environmental factors in the induction of oxidative stress in zebra mussel (Dreissena) Tj ETQq0 0 0 rgBT $_{1.5}^{1/0}$ verlock 10 Tf 50 7

39	Strategies adopted by Aphanizomenon flos-aquae in response to phosphorus deficiency and their role on growth. Environmental Sciences Europe, 2020, 32, .	5.5	7
40	In Vitro Toxicological Screening of Stable and Senescing Cultures of Aphanizomenon, Planktothrix, and Raphidiopsis. Toxins, 2020, 12, 400.	3.4	6
41	The influence of the ecohydrological rehabilitation in the cascade of Arturówek reservoirs in Åódź (Central Poland) on the cyanobacterial and algae blooming. Oceanological and Hydrobiological Studies, 2015, 44, 236-244.	0.7	5
42	Competitive Influence of Zebra Mussel (<i>Dreissena polymorpha</i>) on <i>Daphnia longispina</i> Population Dynamics in the Presence of Cyanobacteria. International Review of Hydrobiology, 2010, 95, 313-329.	0.9	4
43	Cyanobacterial cell-wall components as emerging environmental toxicants - detection and holistic monitoring by cellular signaling biosensors. Science of the Total Environment, 2022, 807, 150645.	8.0	4
44	Relationships among cyanobacteria, zooplankton and fish in sub-bloom conditions in the Sulejow Reservoir. Journal of Limnology, 2017, , .	1.1	3