Albin Pourtier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3150221/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The unfolded protein response and cellular senescence. A Review in the Theme: Cellular Mechanisms of Endoplasmic Reticulum Stress Signaling in Health and Disease. American Journal of Physiology - Cell Physiology, 2015, 308, C415-C425.	4.6	225
2	Role of Cationic Channel TRPV2 in Promoting Prostate Cancer Migration and Progression to Androgen Resistance. Cancer Research, 2010, 70, 1225-1235.	0.9	200
3	Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 528-539.	4.1	165
4	Involvement of Rel/Nuclear Factor-κB Transcription Factors in Keratinocyte Senescence. Cancer Research, 2004, 64, 472-481.	0.9	97
5	Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells. Nature Communications, 2016, 7, 10399.	12.8	92
6	Senescence-Associated Oxidative DNA Damage Promotes the Generation of Neoplastic Cells. Cancer Research, 2009, 69, 7917-7925.	0.9	91
7	Senescent Fibroblasts Enhance Early Skin Carcinogenic Events via a Paracrine MMP-PAR-1 Axis. PLoS ONE, 2013, 8, e63607.	2.5	82
8	Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses?. Cellular and Molecular Life Sciences, 2017, 74, 4471-4509.	5.4	55
9	ATF6α regulates morphological changes associated with senescence in human fibroblasts. Oncotarget, 2016, 7, 67699-67715.	1.8	52
10	MnSOD Upregulation Induces Autophagic Programmed Cell Death in Senescent Keratinocytes. PLoS ONE, 2010, 5, e12712.	2.5	48
11	Sheddingâ€Generated Met Receptor Fragments can be Routed to Either the Proteasomal or the Lysosomal Degradation Pathway. Traffic, 2012, 13, 1261-1272.	2.7	36
12	The ATF6α arm of the Unfolded Protein Response mediates replicative senescence in human fibroblasts through a COX2/prostaglandin E 2 intracrine pathway. Mechanisms of Ageing and Development, 2018, 170, 82-91.	4.6	36
13	Cellular senescence involves an intracrine prostaglandin E2 pathway in human fibroblasts. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1217-1227.	2.4	34
14	Etsâ€l triggers and orchestrates the malignant phenotype of mammary cancer cells within their matrix environment. Journal of Cellular Physiology, 2008, 215, 782-793.	4.1	32
15	Loss of Hypermethylated in Cancer 1 (HIC1) in Breast Cancer Cells Contributes to Stress-induced Migration and Invasion through β-2 Adrenergic Receptor (ADRB2) Misregulation. Journal of Biological Chemistry, 2012, 287, 5379-5389.	3.4	30
16	Etsâ€l controls breast cancer cell balance between invasion and growth. International Journal of Cancer, 2014, 135, 2317-2328.	5.1	29
17	Ets-1 drives breast cancer cell angiogenic potential and interactions between breast cancer and endothelial cells. International Journal of Oncology, 2019, 54, 29-40.	3.3	25
18	The out-of-field dose in radiation therapy induces delayed tumorigenesis by senescence evasion. ELife, 2022, 11.	6.0	7

ALBIN POURTIER

#	Article	IF	CITATIONS
19	Pre-malignant transformation by senescence evasion is prevented by the PERK and ATF6alpha branches of the Unfolded Protein Response. Cancer Letters, 2018, 438, 187-196.	7.2	5
20	Evaluation of effects caused by differentially spliced Ets-1 transcripts in fibroblasts. International Journal of Oncology, 2011, 39, 1073-82.	3.3	1
21	Tumor Xenograft Models to Study the Role of TRP Channels in Tumorigenesis. Methods in Pharmacology and Toxicology, 2012, , 391-399.	0.2	0