
Nevena Cvetesic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3149802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA stretching induces Cas9 off-target activity. Nature Structural and Molecular Biology, 2019, 26, 185-192.	8.2	105
2	Partitioning of tRNA-dependent Editing between Pre- and Post-transfer Pathways in Class I Aminoacyl-tRNA Synthetases. Journal of Biological Chemistry, 2010, 285, 23799-23809.	3.4	68
3	The physiological target for Leu <scp>RS</scp> translational quality control is norvaline. EMBO Journal, 2014, 33, 1639-1653.	7.8	58
4	Conservative route to genome compaction in a miniature annelid. Nature Ecology and Evolution, 2021, 5, 231-242.	7.8	51
5	Kinetic Partitioning between Synthetic and Editing Pathways in Class I Aminoacyl-tRNA Synthetases Occurs at Both Pre-transfer and Post-transfer Hydrolytic Steps. Journal of Biological Chemistry, 2012, 287, 25381-25394.	3.4	48
6	Proteome-wide measurement of non-canonical bacterial mistranslation by quantitative mass spectrometry of protein modifications. Scientific Reports, 2016, 6, 28631.	3.3	34
7	SLIC-CAGE: high-resolution transcription start site mapping using nanogram-levels of total RNA. Genome Research, 2018, 28, 1943-1956.	5.5	33
8	The tRNA A76 Hydroxyl Groups Control Partitioning of the tRNA-dependent Pre- and Post-transfer Editing Pathways in Class I tRNA Synthetase. Journal of Biological Chemistry, 2015, 290, 13981-13991.	3.4	28
9	TBPL2/TFIIA complex establishes the maternal transcriptome through oocyte-specific promoter usage. Nature Communications, 2020, 11, 6439.	12.8	23
10	Synthetic and editing reactions of aminoacyl-tRNA synthetases using cognate and non-cognate amino acid substrates. Methods, 2017, 113, 13-26.	3.8	20
11	On the Mechanism and Origin of Isoleucyl-tRNA Synthetase Editing against Norvaline. Journal of Molecular Biology, 2019, 431, 1284-1297.	4.2	20
12	Kinetic Origin of Substrate Specificity in Post-Transfer Editing by Leucyl-tRNA Synthetase. Journal of Molecular Biology, 2018, 430, 1-16.	4.2	19
13	Neuronal genes deregulated in Cornelia de Lange Syndrome respond to removal and re-expression of cohesin. Nature Communications, 2021, 12, 2919.	12.8	18
14	Naturally Occurring Isoleucyl-tRNA Synthetase without tRNA-dependent Pre-transfer Editing. Journal of Biological Chemistry, 2016, 291, 8618-8631.	3.4	14
15	Lack of Discrimination Against Non-proteinogenic Amino Acid Norvaline by Elongation Factor Tu from Escherichia coli. Croatica Chemica Acta, 2013, 86, 73-82.	0.4	12
16	<i>Saccharomyces cerevisiae</i> displays a stable transcription start site landscape in multiple conditions. FEMS Yeast Research, 2019, 19, .	2.3	10
17	Embryonic tissue differentiation is characterized by transitions in cell cycle dynamic-associated core promoter regulation. Nucleic Acids Research, 2020, 48, 8374-8392.	14.5	8
18	Core promoters across the genome. Nature Biotechnology, 2017, 35, 123-124.	17.5	7

#	Article	IF	CITATIONS
19	Organelle-specific expression of subunit ND5 of human complex I (NADH dehydrogenase) alters cation homeostasis in Saccharomyces cerevisiae. FEMS Yeast Research, 2010, 10, 648-659.	2.3	6
20	Transcription Start Site Mapping Using Super-low Input Carrier-CAGE. Journal of Visualized Experiments, 2019, , .	0.3	5
21	Negative catalysis by the editing domain of class I aminoacyl-tRNA synthetases. Nucleic Acids Research, 2022, 50, 4029-4041.	14.5	3