Atsushi Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3149620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Additive Effects of Copper and Alkali Metal Halides into Methylammonium Lead Iodide Perovskite Solar Cells. Electronic Materials Letters, 2022, 18, 176-186.	2.2	20
2	Fabrication and characterization of CH ₃ NH ₃ PbI ₃ solar cells with added guanidinium and inserted with decaphenylpentasilane. Japanese Journal of Applied Physics, 2022, 61, SB1024.	1.5	23
3	Effects of Adding Alkali Metals and Organic Cations to Cu-Based Perovskite Solar Cells. Applied Sciences (Switzerland), 2022, 12, 1710.	2.5	26
4	Fabrication and characterization of ethylammonium- and rubidium-added perovskite solar cells. , 2022, 9, .		2
5	Electronic structures of Eu-doped FAPbI ₃ perovskite crystals studied by first-principles calculation. , 2022, 9, .		0
6	Additive effect of lanthanide compounds into perovskite layer on photovoltaic properties and electronic structures. Synthetic Metals, 2022, 287, 117092.	3.9	12
7	Effects of Cu, K and Guanidinium Addition to CH3NH3PbI3 Perovskite Solar Cells. Journal of Electronic Materials, 2022, 51, 4317-4328.	2.2	23
8	Effects of mixed-valence states of Eu-doped FAPbI ₃ perovskite crystals studied by first-principles calculation. Materials Advances, 2021, 2, 2609-2616.	5.4	32
9	Fabrication and Characterization of Ni-, Co-, and Rb-Incorporated CH3NH3PbI3 Perovskite Solar Cells. Journal of Electronic Materials, 2021, 50, 1980-1995.	2.2	23
10	Effects of Polysilane Addition to Chlorobenzene and High Temperature Annealing on CH3NH3PbI3 Perovskite Photovoltaic Devices. Coatings, 2021, 11, 665.	2.6	27
11	Additive Effects of Guanidinium Iodide on CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100396.	1.8	22
12	Additive effects of methyl ammonium bromide or formamidinium bromide in methylammonium lead iodide perovskite solar cells using decaphenylcyclopentasilane. Journal of Materials Science: Materials in Electronics, 2021, 32, 26449-26464.	2.2	24
13	Development of Polysilane-Inserted Perovskite Solar Cells. Materials Proceedings, 2021, 4, 51.	0.2	0
14	Polysilane-Inserted Methylammonium Lead Iodide Perovskite Solar Cells Doped with Formamidinium and Potassium. Energies, 2020, 13, 4776.	3.1	32
15	Electronic structures, spectroscopic properties, and thermodynamic characterization of sodium- or potassium-incorporated CH3NH3PbI3 by first-principles calculation. Journal of Materials Science, 2020, 55, 9728-9738.	3.7	18
16	Photovoltaic Characteristics of CH3NH3PbI3 Perovskite Solar Cells Added with Ethylammonium Bromide and Formamidinium Iodide. Coatings, 2020, 10, 410.	2.6	32
17	Effects of doping with Na, K, Rb, and formamidinium cations on (CH3NH3)0.99Rb0.01Pb0.99Cu0.01I3â^² <i>x</i> (Cl, Br) <i>x</i> perovskite photovoltaic cells. AIP Advances, 2020, 10, .	1.3	32
18	Fabrication and characterization of potassium- and formamidinium-added perovskite solar cells. Journal of the Ceramic Society of Japan, 2020, 128, 805-811.	1.1	27

#	Article	IF	CITATIONS
19	Electronic Structures, Spectroscopic Properties, and Thermodynamic Characterization of Alkali Metal and Transition Metal Incorporated Perovskite Crystals by First-Principles Calculation. Materials Proceedings, 2020, 4, .	0.2	0
20	Effects of Guanidinium and Formamidinium Addition to CH3NH3PbI3-Based Perovskite Solar Cells. Materials Proceedings, 2020, 4, .	0.2	0
21	Additive effects of alkali metals on Cu-modified CH ₃ NH ₃ PbI _{3â^î} Cl _Î photovoltaic devices. RSC Advances, 2019, 9, 24231-24240.	3.6	41
22	Effects of guanidinium addition to CH ₃ NH ₃ Pbl _{3â^2} <i>_{xperovskite photovoltaic devices. Journal of the Ceramic Society of Japan, 2019, 127, 491-497.}</i>	sub><	;/i>Cl <i&< td=""></i&<>
23	Effects of annealing temperature on decaphenylcyclopentasilane-inserted CH3NH3PbI3 perovskite solar cells. Chemical Physics Letters, 2019, 737, 136822.	2.6	44
24	Fabrication and characterization of perovskite solar cells added with zinc phthalocyanine to active layer. AIP Conference Proceedings, 2019, , .	0.4	3
25	Electronic Structures and Magnetic Properties of Transition Metal Doped CsPbI3 Perovskite Compounds by First-Principles Calculation. Physics of the Solid State, 2019, 61, 1074-1085.	0.6	9
26	Fabrication and characterization of perovskite type solar cells using phthalocyanine complexes. Applied Surface Science, 2019, 488, 586-592.	6.1	30
27	Fabrication and evaluation of K-doped MA0.8FA0.1K0.1PbI3(Cl) perovskite solar cells. Chemical Physics Letters, 2019, 730, 117-123.	2.6	29
28	Effects of KBr or KCl addition to CH3NH3PbI3(Cl) photovoltaic devices. AIP Conference Proceedings, 2019, , .	0.4	0
29	Effects of TiO2 nanoparticles with different sizes on the performance of CH3NH3PbI3-xClx solar cells. AIP Conference Proceedings, 2019, , .	0.4	1
30	Effects of poly(methyl methacrylate) addition to perovskite photovoltaic devices. AIP Conference Proceedings, 2019, , .	0.4	14
31	Additive Effect of Formamidinium Chloride in Methylammonium Lead Halide Compound-Based Perovskite Solar Cells. Journal of Electronic Materials, 2019, 48, 3900-3907.	2.2	22
32	First-principles calculation study of electronic structures of alkali metals (Li, K, Na and) Tj ETQq0 0 0 rgBT /Overlo 912-921.	ock 10 Tf 5 6.1	0 227 Td (Rb) 28
33	Effects of CsBr addition on the performance of CH3NH3PbI3-xClx-based solar cells. AIP Conference Proceedings, 2018, , .	0.4	2
34	Rietveld refinement of the crystal structure of perovskite solar cells using CH3NH3PbI3 and other compounds. AIP Conference Proceedings, 2018, , .	0.4	3
35	Insertion effect of spin-coated films of C60-ethylenediamine adduct on organic thin-film solar cells. AIP Conference Proceedings, 2018, , .	0.4	3
36	Fabrication and characterization of rubidium/formamidinium-incorporated methylammonium-lead-halide perovskite solar cells. AIP Conference Proceedings, 2018, , .	0.4	5

#	Article	IF	CITATIONS
37	Fabrication and characterization of perovskite solar cells added with MnCl2, YCl3 or poly(methyl) Tj ETQq1 1 0.78	4314 rgB1 0.4	Overlock
38	First-principles calculation study of electronic structures and magnetic properties of Mn-doped perovskite crystals for solar cell applications. Japanese Journal of Applied Physics, 2018, 57, 02CE04.	1.5	10
39	Fabrication and characterization of CH ₃ NH ₃ (Cs)Pb(Sn)I ₃ (Cl) perovskite solar cells with TiO ₂ nanoparticle layers. Japanese Journal of Applied Physics, 2018, 57, 02CE03.	1.5	11
40	Effects of Decaphenylcyclopentasilane Addition on Photovoltaic Properties of Perovskite Solar Cells. Coatings, 2018, 8, 461.	2.6	15
41	Fabrication and Characterization of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells Added with Polysilanes. International Journal of Photoenergy, 2018, 2018, 1-7.	2.5	27
42	Effects of transition metals incorporated into perovskite crystals on the electronic structures and magnetic properties by first-principles calculation. Heliyon, 2018, 4, e00755.	3.2	25
43	Effects of PbI ₂ addition and TiO ₂ electron transport layers for perovskite solar cells. Japanese Journal of Applied Physics, 2018, 57, 08RE05.	1.5	22
44	Effects of halogen doping on the photovoltaic properties of HC(NH2)2PbI3 perovskite solar cells. AIP Conference Proceedings, 2017, , .	0.4	16
45	Fabrication and characterization of CH3NH3(Cs)Pb(Sn)I3(Br) perovskite solar cells. AIP Conference Proceedings, 2017, , .	0.4	11
46	Fabrication and characterization of perovskite based solar cells using phthalocyanine and naphthalocyanine as hole-transporting layer. AIP Conference Proceedings, 2017, , .	0.4	1
47	Fabrication and characterization of perovskite photovoltaic devices with TiO2 nanoparticle layers. AIP Conference Proceedings, 2017, , .	0.4	6
48	Effects of SbBr3 addition to CH3NH3PbI3 solar cells. AIP Conference Proceedings, 2017, , .	0.4	11
49	Effects of polysilaneâ€doped spiroâ€OMeTAD hole transport layers on photovoltaic properties. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600591.	1.8	13
50	Effects of NH ₄ Cl addition to perovskite CH ₃ NH ₃ PbI ₃ photovoltaic devices. Journal of the Ceramic Society of Japan, 2017, 125, 303-307.	1.1	36
51	Fabrication and Characterization of Element-Doped Perovskite Solar Cells. , 2017, , .		1
52	Electronic Structures, and Optical and Magnetic Properties of Quadruple-Decker Phthalocyanines. Magnetochemistry, 2017, 3, 21.	2.4	2
53	Effects of Metal Phthalocyanines as Hole-transporting Layers of Perovskite-based Solar Cells. Chemical and Materials Engineering, 2017, 5, 34-42.	0.7	4
54	Effects of PBr ₃ Addition to Polysilane Thin Films on Structures and Photovoltaic Properties. Green and Sustainable Chemistry, 2017, 07, 20-34.	1.2	5

#	Article	IF	CITATIONS
55	Fabrication and Characterization of CH3NH3PbI3â^'xâ^'yBrxCly Perovskite Solar Cells. Energies, 2016, 9, 376.	3.1	25
56	Effects of Cl Addition to Sb-Doped Perovskite-Type CH3NH3PbI3 Photovoltaic Devices. Metals, 2016, 6, 147.	2.3	43
57	Effects of chlorine addition to perovskite-type CH ₃ NH ₃ PbI ₃ photovoltaic devices. Journal of the Ceramic Society of Japan, 2016, 124, 234-238.	1.1	33
58	Fabrication and characterization of bismuth ferrite as an electron transport layer in perovskite photovoltaic devices. Journal of the Ceramic Society of Japan, 2016, 124, 602-605.	1.1	3
59	Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines. AIP Conference Proceedings, 2016, , .	0.4	2
60	Low temperature fabrication of perovskite solar cells with TiO2 nanoparticle layers. AIP Conference Proceedings, 2016, , .	0.4	6
61	Fabrication and characterization of perovskite-based CH3NH3Pb1-xGexI3, CH3NH3Pb1-xTlxI3 and CH3NH3Pb1-xInxI3 photovoltaic devices. AIP Conference Proceedings, 2016, , .	0.4	24
62	Fabrication and photovoltaic properties of ZnO nanorods/perovskite solar cells. AIP Conference Proceedings, 2016, , .	0.4	4
63	Photovoltaic properties of perovskite-type solar cells with polysilane-doped hole transport layers. , 2016, , .		0
64	Effects of Antimony Addition to Perovskite-type CH ₃ NH ₃ PbI ₃ Photovoltaic Devices. Chemistry Letters, 2016, 45, 134-136.	1.3	63
65	Fabrication and Photocurrent Generation Properties of Insoluble Hierarchical Polythiophene Thin Films Prepared by Sequential Electrochemical Polymerization. Bulletin of the Chemical Society of Japan, 2016, 89, 700-704.	3.2	4
66	Fabrication and characterization of BiFeO <inf>3</inf> thin films and application for photovoltaic devices. , 2016, , .		0
67	Effects of central metal on electronic structure, magnetic properties, infrared and Raman spectra of double-decker phthalocyanine. Applied Surface Science, 2016, 380, 127-134.	6.1	12
68	Effects of hole-transporting layers of perovskite-based solar cells. Japanese Journal of Applied Physics, 2016, 55, 02BF01.	1.5	16
69	Effects of Niobium Addition into TiO2 Layers on CH3NH3PbI3-based Photovoltaic Devices. Chemistry Letters, 2015, 44, 1033-1035.	1.3	21
70	Formation of Thin Films of Densely Packed [60]Fullerene–Diaminoethane Adduct Microparticles at a Liquid/Liquid Interface and Their Photoelectrochemical Applications. Chemistry Letters, 2015, 44, 489-491.	1.3	6
71	Microstructures and properties of CH3NH3PbI3â^'xClx hybrid solar cells. , 2015, , .		8
72	Fabrication and Characterization of a Perovskite-Type Solar Cell with a Substrate Size of 70 mm. Coatings, 2015, 5, 646-655.	2.6	24

#	Article	IF	CITATIONS
73	Effects of Germanium Tetrabromide Addition to Zinc Tetraphenyl Porphyrin / Fullerene Bulk Heterojunction Solar Cells. Electronics (Switzerland), 2014, 3, 112-121.	3.1	8
74	Electronic structures and magnetic properties of Sc2YN@C80(CF3)2dimer. Japanese Journal of Applied Physics, 2014, 53, 05FN01.	1.5	2
75	Photovoltaic properties and morphology of organic solar cells based on liquid-crystal semiconducting polymer with additive. , 2014, , .		5
76	Microstructures and photovoltaic properties of perovskite-type CH ₃ NH ₃ PbI ₃ compounds. Applied Physics Express, 2014, 7, 121601.	2.4	99
77	Effect of annealing on photovoltaic properties and microstructure of conventional and inverted organic solar cells using active bilayer based on liquid-crystal semiconducting polymer and fullerene. International Journal of Energy Research, 2014, 38, 1541-1550.	4.5	7
78	Electronic structures and magnetic properties of Sc4O2@C80(CF3)n(n= 2 and 4). Japanese Journal of Applied Physics, 2014, 53, 05FN02.	1.5	5
79	Effect of gold nanoparticle in holeâ€ŧransport layer on inverted organic thinâ€film solar cell performance. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1645-1650.	1.8	8
80	C ₆₀ –ethylenediamine adduct thin film as a buffer layer for inverted-type organic solar cells. RSC Advances, 2014, 4, 34950.	3.6	10
81	Role of scandium atom in ScxY3â^'xN@C80(CF3)n (n=0, 2) on nuclear quadrupole interaction, electric field gradient and asymmetric parameters. Microelectronic Engineering, 2014, 126, 113-117.	2.4	2
82	Fabrication and Characterization of TiO2/CH3NH3PbI3-based Photovoltaic Devices. Chemistry Letters, 2014, 43, 916-918.	1.3	37
83	Fabrication and characterization of organic solar cells using titanylphthalocyanine as hole transport layer. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2861-2864.	1.8	4
84	Fabrication and characterization of polysilane: PCBM bulk heterojunction solar cells. Open Engineering, 2013, 3, .	1.6	2
85	Fabrication and characterization of fullerene-based solar cells containing phthalocyanine and naphthalocyanine dimers. Synthetic Metals, 2013, 177, 48-51.	3.9	18
86	Influence of chemical substitution in ScxY3â^'xN@C80(CF3)n endohedral fullerenes on magnetic properties. Physica B: Condensed Matter, 2013, 428, 18-26.	2.7	8
87	Microstructures and Photovoltaic Properties of Polysilane-Based Solar Cells. Japanese Journal of Applied Physics, 2013, 52, 04CR07.	1.5	27
88	Fabrication and characterization of PCBM:P3HT bulk heterojunction solar cells doped with silicon naphthalocyanine. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1836-1839.	0.8	5
89	Fabrication and characterization of silicon naphthalocyanine, gallium phthalocyanine and fullerene-based organic solar cells with inverted structures. Journal of Physics: Conference Series, 2013, 433, 012025.	0.4	7
90	Effects of phosphorus addition to polyâ€methylâ€phenylâ€silane based photovoltaic devices. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1832-1835.	0.8	2

#	Article	IF	CITATIONS
91	Fabrication and characterization of tetracyanoquinodimethane/phthalocyanine solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 877-881.	3.5	18
92	Effects of germanium addition to copper phthalocyanine/fullerene-based solar cells. Open Engineering, 2012, 2, .	1.6	5
93	Fabrication and Characterization of Phthalocyanine/C ₆₀ Solar Cells with Inverted Structure. Advances in Chemical Engineering and Science, 2012, 02, 461-464.	0.5	14
94	Fabrication and characterization of porphyrin dye-sensitized solar cells. Materials Chemistry and Physics, 2011, 129, 236-241.	4.0	9
95	Formation and characterization of phthalocyanine dimer/C60 solar cells. Progress in Natural Science: Materials International, 2011, 21, 27-30.	4.4	4
96	Fabrication and characterization of TiO2-based dye-sensitized solar cells. Progress in Natural Science: Materials International, 2011, 21, 122-126.	4.4	44
97	Geometrical effects of (14N@C60)2, 14N@C60 and C59N endohedral fullerenes within single-walled carbon nanotube as peapods on electronic structure and magnetic properties. Physica B: Condensed Matter, 2011, 406, 3274-3278.	2.7	8
98	Fabrication and photovoltaic property of diamond:fullerene nanocomposite thin films. Journal of the Ceramic Society of Japan, 2010, 118, 1006-1008.	1.1	6
99	Fabrication and characterization of titanium dioxide/copper indium disulfide solar cells. Journal of the Ceramic Society of Japan, 2010, 118, 30-33.	1.1	2
100	Structure and photovoltaic activity of cupric oxide-based thin film solar cells. Journal of the Ceramic Society of Japan, 2010, 118, 1021-1023.	1.1	27
101	Fabrication and characterization of fullerene/porphyrin bulk heterojunction solar cells. Journal of Physics and Chemistry of Solids, 2010, 71, 551-555.	4.0	61
102	Magnetic properties of the Fell spin crossover complex in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol). Journal of Solid State Chemistry, 2010, 183, 951-956.	2.9	1
103	Fabrication and characterization of C60/tetrathiafulvalene solar cells. Journal of Physics and Chemistry of Solids, 2010, 71, 1587-1591.	4.0	7
104	Fabrication and Characterization of Fullerene-Based Bulk Heterojunction Solar Cells with Porphyrin, CulnS2, Diamond and Exciton-Diffusion Blocking Layer. Energies, 2010, 3, 671-685.	3.1	32
105	Role of electrolytes in the preparation of nanoparticles via the emulsion polymerization of vinyl pivalate. Journal of Colloid and Interface Science, 2009, 338, 480-485.	9.4	2
106	Fabrication and characterization of mixture type dye-sensitized solar cells with organic dyes. Journal of the Ceramic Society of Japan, 2009, 117, 964-966.	1.1	3
107	Fabrication and characterization of inorganic-organic hybrid solar cells based on CuInS2. Journal of the Ceramic Society of Japan, 2009, 117, 967-969.	1.1	18
108	High spin/low spin phase transitions of a spin-crossover complex in the emulsion polymerization of trifluoroethylmethacrylate (TFEMA) using PVA as a protective colloid. Colloid and Polymer Science, 2008, 286, 525-534.	2.1	12

#	Article	IF	CITATIONS
109	Effect of Central Metal Ion, Co ^{II} in the Fe ^{II} Spin-Crossover Complex in Emulsion Polymerization of Trifluoroethylmethacrylate Using Poly(Vinyl) Tj ETQq1 1 0	.7 8. 2314 r	g&T /Overloc
110	Formation and Characterization of Bulk Hetero-Junction Solar Cells Using C ₆₀ and Perylene. Materials Transactions, 2008, 49, 2457-2460.	1.2	18
111	Effect of chain transfer agents on the kinetics and mechanism of particle nucleation in the emulsion polymerization of vinyl pivalate. Colloid and Polymer Science, 2007, 285, 523-534.	2.1	15
112	Influence of additives on model emulsion polymerization of vinyl acetate (VAc) using poly(vinyl) Tj ETQq0 0 0 rgE	T /Overloc 2.1	ck 10 Tf 50 62
113	Polymerization of vinyl acetate in fatty acids and properties of poly (vinyl alcohols) derived from the poly (vinyl acetates). Colloid and Polymer Science, 2005, 283, 799-804.	2.1	4
114	Dispersion polymerization of vinyl acetate in a mixture of ethanol and water. Polymer International, 2005, 54, 143-148.	3.1	14
115	Surface sulfate groups on poly(methyl methacrylate) and poly(vinyl acetate) particles from soap-free emulsion polymerization. E-Polymers, 2005, 5, .	3.0	1
116	Thermosensitive poly(methyl methacrylate) emulsion prepared in the presence of poly(vinyl alcohol) with a cloud point as a protective colloid. Colloid and Polymer Science, 2004, 283, 111-116.	2.1	4
117	Study on the initial stage of emulsion polymerization of vinyl acetate using poly(vinyl alcohol) as a protective colloid. Colloid and Polymer Science, 2003, 281, 337-342.	2.1	13
118	Effect of additives on the initial stage of emulsion polymerization of methyl methacrylate using polyvinyl alcohol as a protective colloid. Macromolecular Symposia, 2000, 150, 143-148.	0.7	9
119	Ultrasonic Polymerization of Poly(vinylpyrrolidone). Polymer Journal, 1995, 27, 1144-1146.	2.7	16
120	Fabrication and Characterization of Fullerene / Dibenzo-Tetrathiafulvalene Solar Cells. Materials Science Forum, 0, 688, 80-84.	0.3	2
121	Effects of co-addition of copper, sodium and ethylammonium to CH ₃ NH ₃ PbI <sub& perovskite compound. , 0, , .</sub& 	amp;gt;38	kamp;lt;/sub&
122	Fabrication and characterization of perovskite solar cells using copper phthalocyanine complex with tetracyanoquinodimethane. , 0, , .		0
123	Effects of Cu, K and guanidinium addition to CH ₃ NH ₃ PbI <sub& perovskite solar cells 0</sub& 	amp;gt;38	kamp;lt;/sub8