Daniel Castro-Fresno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/314956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review of seasonal heat storage in large basins: Water tanks and gravel–water pits. Applied Energy, 2010, 87, 390-397.	5.1	198
2	Is the Sustainable Development Goals (SDG) index an adequate framework to measure the progress of the 2030 Agenda?. Sustainable Development, 2018, 26, 663-671.	6.9	184
3	Asphalt solar collectors: A literature review. Applied Energy, 2013, 102, 962-970.	5.1	153
4	Mechanical performance of fibers in hot mix asphalt: A review. Construction and Building Materials, 2019, 200, 756-769.	3.2	131
5	Evaluation of compactability and mechanical properties of bituminous mixes with warm additives. Construction and Building Materials, 2011, 25, 2304-2311.	3.2	108
6	Comparative analysis of the performance of asphalt concretes modified by dry way with polymeric waste. Construction and Building Materials, 2016, 112, 1133-1140.	3.2	92
7	Evaluation of existing sustainable infrastructure rating systems for their application in developing countries. Ecological Indicators, 2016, 71, 491-502.	2.6	82
8	Evaluation of anti-reflective cracking systems using geosynthetics in the interlayer zone. Geotextiles and Geomembranes, 2011, 29, 130-136.	2.3	80
9	Effects of sea water environment on glass fiber reinforced plastic materials used for marine civil engineering constructions. Materials & Design, 2015, 66, 46-50.	5.1	79
10	Use of plastic scrap in asphalt mixtures added by dry method as a partial substitute for bitumen. Waste Management, 2019, 87, 751-760.	3.7	76
11	Thermal and hydraulic analysis of multilayered asphalt pavements as active solar collectors. Applied Energy, 2013, 111, 324-332.	5.1	72
12	New procedure for measuring adherence between a geosynthetic material and a bituminous mixture. Geotextiles and Geomembranes, 2010, 28, 483-489.	2.3	61
13	Dynamic modulus of asphalt mixture by ultrasonic direct test. NDT and E International, 2010, 43, 629-634.	1.7	60
14	Study of different grouting materials used in vertical geothermal closed-loop heat exchangers. Applied Thermal Engineering, 2013, 50, 159-167.	3.0	60
15	Test methods and influential factors for analysis of bonding between bituminous pavement layers. Construction and Building Materials, 2013, 43, 372-381.	3.2	59
16	Borehole thermal response and thermal resistance of four different grouting materials measured with a TRT. Applied Thermal Engineering, 2013, 53, 13-20.	3.0	59
17	Sustainable Drainage Practices in Spain, Specially Focused on Pervious Pavements. Water (Switzerland), 2013, 5, 67-93.	1.2	59
18	Incorporation of Additives and Fibers in Porous Asphalt Mixtures: A Review. Materials, 2019, 12, 3156.	1.3	59

#	Article	IF	CITATIONS
19	Influence of surface macro-texture and binder dosage on the adhesion between bituminous pavement layers. Construction and Building Materials, 2012, 28, 187-192.	3.2	55
20	Methodology for the development of a new Sustainable Infrastructure Rating System for Developing Countries (SIRSDEC). Environmental Science and Policy, 2017, 69, 65-72.	2.4	52
21	Environmental impact assessment of induction-healed asphalt mixtures. Journal of Cleaner Production, 2019, 208, 1546-1556.	4.6	51
22	Analysis and Contrast of Different Pervious Pavements for Management of Storm-Water in a Parking Area in Northern Spain. Water Resources Management, 2011, 25, 1525-1535.	1.9	50
23	Evaluation of reflective cracking in pavements using a new procedure that combine loads with different frequencies. Construction and Building Materials, 2015, 75, 368-374.	3.2	50
24	Comparative analysis of TIG welding distortions between austenitic and duplex stainless steels by FEM. Applied Thermal Engineering, 2010, 30, 2448-2459.	3.0	47
25	Evaluation of the resistant capacity of cable nets using the finite element method and experimental validation. Engineering Geology, 2008, 100, 1-10.	2.9	46
26	Experimental study on stiffness development of asphalt mixture containing cement and Ca(OH)2 as contribution filler. Materials & Design, 2015, 74, 157-163.	5.1	46
27	Study of the mechanical behavior of asphalt mixtures using fractional rheology to model their viscoelasticity. Construction and Building Materials, 2019, 200, 124-134.	3.2	46
28	Experimental characterization and performance evaluation of geothermal grouting materials subjected to heating–cooling cycles. Construction and Building Materials, 2015, 98, 583-592.	3.2	45
29	Water quality and quantity assessment of pervious pavements performance in experimental car park areas. Water Science and Technology, 2014, 69, 1526-1533.	1.2	44
30	Laboratory assessment of porous asphalt mixtures reinforced with synthetic fibers. Construction and Building Materials, 2020, 234, 117224.	3.2	42
31	Experimental study of the behaviour of different geosynthetics as anti-reflective cracking systems using a combined-load fatigue test. Geotextiles and Geomembranes, 2015, 43, 345-350.	2.3	40
32	Recyclability potential of asphalt mixes containing reclaimed asphalt pavement and industrial by-products. Construction and Building Materials, 2019, 195, 148-155.	3.2	40
33	Multiple-response optimization of open graded friction course reinforced with fibers through CRITIC-WASPAS based on Taguchi methodology. Construction and Building Materials, 2020, 233, 117274.	3.2	39
34	Effect of copper slag addition on mechanical behavior of asphalt mixes containing reclaimed asphalt pavement. Construction and Building Materials, 2016, 119, 268-276.	3.2	37
35	Multi-Response Optimization of Porous Asphalt Mixtures Reinforced with Aramid and Polyolefin Fibers Employing the CRITIC-TOPSIS Based on Taguchi Methodology. Materials, 2019, 12, 3789.	1.3	36
36	Energy Dissipating Devices in Falling Rock Protection Barriers. Rock Mechanics and Rock Engineering, 2017, 50, 603-619.	2.6	34

#	Article	IF	CITATIONS
37	Experimental analysis of enhanced cement-sand-based geothermal grouting materials. Construction and Building Materials, 2018, 185, 481-488.	3.2	34
38	Lime Stabilization of bentonite sludge from tunnel boring. Applied Clay Science, 2011, 51, 250-257.	2.6	31
39	Performance of pervious pavement parking bays storing rainwater in the north of Spain. Water Science and Technology, 2010, 62, 615-621.	1.2	30
40	Characterization of Infiltration Capacity of Permeable Pavements with Porous Asphalt Surface Using Cantabrian Fixed Infiltrometer. Journal of Hydrologic Engineering - ASCE, 2012, 17, 597-603.	0.8	29
41	Self-Healing Capacity of Asphalt Mixtures Including By-Products Both as Aggregates and Heating Inductors. Materials, 2018, 11, 800.	1.3	29
42	Runoff infiltration to permeable paving in clogged conditions. Urban Water Journal, 2008, 5, 117-124.	1.0	28
43	Laboratory Study on the Stormwater Retention and Runoff Attenuation Capacity of Four Permeable Pavements. Journal of Environmental Engineering, ASCE, 2016, 142, .	0.7	28
44	Flexible systems anchored to the ground for slope stabilisation: Critical review of existing design methods. Engineering Geology, 2011, 122, 129-145.	2.9	27
45	Freeze–thaw durability of cement-based geothermal grouting materials. Construction and Building Materials, 2014, 55, 390-397.	3.2	26
46	Assessment of carbon black modified binder in a sustainable asphalt concrete mixture. Construction and Building Materials, 2019, 211, 363-370.	3.2	26
47	A multi-criteria decision-making analysis for the selection of fibres aimed at reinforcing asphalt concrete mixtures. International Journal of Pavement Engineering, 2021, 22, 763-779.	2.2	26
48	Energy consumption during compaction with a Gyratory Intensive Compactor Tester. Estimation models. Construction and Building Materials, 2011, 25, 979-986.	3.2	25
49	Effect of warm additives on rutting and fatigue behaviour of asphalt mixtures. Construction and Building Materials, 2013, 47, 240-244.	3.2	25
50	Application of the Sustainable Infrastructure Rating System for Developing Countries (SIRSDEC) to a case study. Environmental Science and Policy, 2017, 69, 73-80.	2.4	25
51	Laboratory analysis of the infiltration capacity of interlocking concrete block pavements in car parks. Water Science and Technology, 2013, 67, 675-681.	1.2	24
52	The use of copper slags as an aggregate replacement in asphalt mixes with RAP: Physical–chemical and mechanical behavioural analysis. Construction and Building Materials, 2018, 190, 427-438.	3.2	24
53	An experimental laboratory study of fiber-reinforced asphalt mortars with polyolefin-aramid and polyacrylonitrile fibers. Construction and Building Materials, 2020, 248, 118622.	3.2	24
54	Selection of fibers to improve porous asphalt mixtures using multi-criteria analysis. Construction and Building Materials, 2021, 266, 121198.	3.2	24

#	Article	IF	CITATIONS
55	Numerical simulation of the performance of a snow fence with airfoil snow plates by FVM. Journal of Computational and Applied Mathematics, 2010, 234, 1200-1210.	1.1	23
56	Infiltration Behaviour of Polymerâ€ <scp>M</scp> odified Porous Concrete and Porous Asphalt Surfaces used in Su <scp>DS</scp> Techniques. Clean - Soil, Air, Water, 2014, 42, 139-145.	0.7	23
57	3D numerical modelling and experimental validation of an asphalt solar collector. Applied Thermal Engineering, 2017, 126, 678-688.	3.0	23
58	Evolution of penetration resistance in fresh concrete. Cement and Concrete Research, 2008, 38, 649-659.	4.6	22
59	Fluid transport within permeable pavement systems: A review of evaporation processes, moisture loss measurement and the current state of knowledge. Construction and Building Materials, 2020, 243, 118179.	3.2	22
60	Critical assessment of new polymer-modified bitumen for porous asphalt mixtures. Construction and Building Materials, 2021, 307, 124957.	3.2	22
61	Abrasive wear evolution in concrete pavements. Road Materials and Pavement Design, 2012, 13, 534-548.	2.0	20
62	Thermal suspectability analysis of the reuse of fly ash from cellulose industry as contribution filler in bituminous mixtures. Construction and Building Materials, 2018, 160, 268-277.	3.2	20
63	Comparative analysis of the outflow water quality of two sustainable linear drainage systems. Water Science and Technology, 2014, 70, 1341-1347.	1.2	19
64	Study of the Raveling Resistance of Porous Asphalt Pavements Used in Sustainable Drainage Systems Affected by Hydrocarbon Spills. Sustainability, 2015, 7, 16226-16236.	1.6	19
65	Field experimental study of traffic-induced turbulence on highways. Atmospheric Environment, 2012, 61, 189-196.	1.9	18
66	Damage evaluation during installation of geosynthetics used in asphalt pavements. Geosynthetics International, 2014, 21, 377-386.	1.5	18
67	How to correct the ambient temperature influence on the thermal response test results. Applied Thermal Engineering, 2015, 82, 39-47.	3.0	18
68	Analysis of replacing virgin bitumen by plastic waste in asphalt concrete mixtures. International Journal of Pavement Engineering, 2022, 23, 2621-2630.	2.2	18
69	Field Study of Infiltration Capacity Reduction of Porous Mixture Surfaces. Water (Switzerland), 2014, 6, 661-669.	1.2	17
70	Evaluation of LEED for Neighbourhood Development and Envision Rating Frameworks for Their Implementation in Poorer Countries. Sustainability, 2018, 10, 492.	1.6	17
71	Field measurements of anchored flexible systems for slope stabilisation: Evidence of passive behaviour. Engineering Geology, 2013, 153, 95-104.	2.9	16
72	Relationship between Urban Runoff Pollutant and Catchment Characteristics. Journal of Irrigation and Drainage Engineering - ASCE, 2013, 139, 833-840.	0.6	16

#	Article	IF	CITATIONS
73	Influence of early colour degradation of asphalt pavements on their thermal behaviour. Construction and Building Materials, 2014, 65, 432-439.	3.2	16
74	Use of explicit FEM models for the structural and parametrical analysis of rockfall protection barriers. Engineering Structures, 2018, 166, 212-226.	2.6	16
75	Study of the permanent deformation of binders and asphalt mixtures using rheological models of fractional viscoelasticity. Construction and Building Materials, 2020, 260, 120438.	3.2	16
76	Influence of carbon fibre stiffness and adhesive ductility on CFRP-steel adhesive joints with short bond lengths. Construction and Building Materials, 2020, 260, 119758.	3.2	16
77	Mechanical performance of sustainable asphalt mixtures manufactured with copper slag and high percentages of reclaimed asphalt pavement. Construction and Building Materials, 2021, 304, 124653.	3.2	16
78	Sustainable Asphalt Mixes: Use of Additives and Recycled Materials. Baltic Journal of Road and Bridge Engineering, 2011, 6, 249-257.	0.4	16
79	Infiltration Capacity Assessment of Urban Pavements Using the LCS Permeameter and the CP Infiltrometer. Journal of Irrigation and Drainage Engineering - ASCE, 2008, 134, 659-665.	0.6	15
80	Design and construction of an experimental pervious paved parking area to harvest reusable rainwater. Water Science and Technology, 2011, 64, 1942-1950.	1.2	15
81	Evaluation of water effect on bituminous mastics with different contribution fillers and binders. Construction and Building Materials, 2012, 29, 339-347.	3.2	15
82	Reduction in the use of mineral aggregate by recycling cellulose ashes to decrease the aging of hot asphalt mixtures. Construction and Building Materials, 2017, 143, 547-557.	3.2	15
83	New procedure to control the tack coat applied between bituminous pavement layers. Construction and Building Materials, 2013, 44, 228-235.	3.2	14
84	Porous asphalt mixture with alternative aggregates and crumb-rubber modified binder at reduced temperature. Construction and Building Materials, 2017, 150, 260-267.	3.2	14
85	Non-linear analysis of cable networks by FEM and experimental validation. International Journal of Computer Mathematics, 2009, 86, 301-313.	1.0	13
86	Flexible membranes anchored to the ground for slope stabilisation: Numerical modelling of soil slopes using SPH. Computers and Geotechnics, 2016, 78, 1-10.	2.3	13
87	Durability of geothermal grouting materials considering extreme loads. Construction and Building Materials, 2018, 162, 732-739.	3.2	13
88	Decision support model for the selection of asphalt wearing courses in highly trafficked roads. Soft Computing, 2018, 22, 7407-7421.	2.1	13
89	Optimizing the valorization of industrial by-products for the induction healing of asphalt mixtures. Construction and Building Materials, 2019, 228, 116715.	3.2	13
90	Proposal of a New Porous Concrete Dosage Methodology for Pavements. Materials, 2019, 12, 3100.	1.3	13

#	Article	IF	CITATIONS
91	Temperature Performance of Different Pervious Pavements: Rainwater Harvesting for Energy Recovery Purposes. Water Resources Management, 2013, 27, 5003.	1.9	12
92	Assessment of induction heating in the performance of porous asphalt mixtures. Road Materials and Pavement Design, 2020, 21, 2302-2320.	2.0	12
93	Physical and Mechanical Characterization of Sustainable and Innovative Porous Concrete for Urban Pavements Containing Metakaolin. Sustainability, 2020, 12, 4243.	1.6	12
94	Effect of Synthetic Fibers and Hydrated Lime in Porous Asphalt Mixture Using Multi-Criteria Decision-Making Techniques. Materials, 2020, 13, 675.	1.3	12
95	Mechanical, environmental and economic feasibility of highly sustainable porous asphalt mixtures. Construction and Building Materials, 2020, 251, 118982.	3.2	12
96	Laboratory Characterization of Porous Asphalt Mixtures with Aramid Fibers. Materials, 2021, 14, 1935.	1.3	12
97	Nonlinear explicit analysis and study of the behaviour of a new ring-type brake energy dissipator by FEM and experimental comparison. Applied Mathematics and Computation, 2010, 216, 1571-1582.	1.4	11
98	New launching method for steel bridges based on a self-supporting deck system: FEM and DOE analyses. Automation in Construction, 2014, 44, 183-196.	4.8	11
99	Effect of dry-shaking treatment on concrete pavement properties. Construction and Building Materials, 2008, 22, 2202-2211.	3.2	10
100	Classification and Comparison of Snow Fences for the Protection of Transport Infrastructures. Journal of Cold Regions Engineering - ASCE, 2011, 25, 162-181.	0.5	10
101	Effect of Type of Compaction on Mechanical Properties in Warm-Mix Asphalts. Journal of Materials in Civil Engineering, 2012, 24, 1043-1049.	1.3	10
102	Behaviour of geotextiles designed for pervious pavements as a support for biofilm development. Geotextiles and Geomembranes, 2015, 43, 139-147.	2.3	10
103	Patch loading in slender and high depth steel panels: FEM–DOE analyses and bridge launching application. Engineering Structures, 2015, 83, 74-85.	2.6	10
104	Analysis of the skid resistance and adherence between layers of asphalt concretes modified by dry way with polymeric waste. Construction and Building Materials, 2017, 133, 163-170.	3.2	10
105	Mechanical behavior of asphalt mixtures containing silica gels as warm additives. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	10
106	Multidimensional Construction Planning and Agile Organized Project Execution—The 5D-PROMPT Method. Sustainability, 2020, 12, 6340.	1.6	10
107	Long-Term Simulation of a System for Catchment, Pretreatment, and Treatment of Polluted Runoff Water. Journal of Environmental Engineering, ASCE, 2010, 136, 1442-1446.	0.7	9
108	Long-term analysis of clogging and oil bio-degradation in a System of Catchment, Pre-treatment and Treatment (SCPT). Journal of Hazardous Materials, 2011, 185, 1221-1227.	6.5	9

#	Article	IF	CITATIONS
109	Effects of aggregate shape and size and surfactants on the resilient modulus of bituminous mixes. Canadian Journal of Civil Engineering, 2011, 38, 893-899.	0.7	9
110	Nonlinear numerical simulation of rainwater infiltration through road embankments by FEM. Applied Mathematics and Computation, 2012, 219, 1843-1852.	1.4	9
111	Monitoring and Evaluation of the Thermal Behavior of Permeable Pavements for Energy Recovery Purposes in an Experimental Parking Lot: Preliminary Results. Journal of Energy Engineering - ASCE, 2013, 139, 230-237.	1.0	9
112	Glass fiber-reinforced polymer caissons used for construction of mooring dolphins in Puerto del Rosario harbor (Fuerteventura, Canary Islands). Coastal Engineering, 2015, 98, 16-25.	1.7	9
113	Asphalt mixtures with high rates of recycled aggregates and modified bitumen with rubber at reduced temperature. Road Materials and Pavement Design, 2018, 19, 1489-1498.	2.0	9
114	Influence of the Diatomite Specie on the Peak and Residual Shear Strength of the Fine-Grained Soil. Applied Sciences (Switzerland), 2021, 11, 1352.	1.3	8
115	Experimental evaluation and recyclability potential of asphalt concrete mixtures with polyacrylonitrile fibers. Construction and Building Materials, 2022, 317, 125829.	3.2	8
116	EXPERIMENTAL STUDY OF BITUMINOUS MASTIC BEHAVIOUR USING DIFFERENT FILLERS BASED ON THE UCL METHOD. Journal of Civil Engineering and Management, 2013, 19, 149-157.	1.9	7
117	Development of an estimative model for the optimal tack coat dosage based on aggregate gradation of hot mix asphalt pavements. Construction and Building Materials, 2016, 118, 1-10.	3.2	7
118	Design and Construction Methods of Caisson-Type Maritime Infrastructures Using GFRP. Journal of Composites for Construction, 2016, 20, .	1.7	7
119	An integrated DoE – Stochastic multi criteria decision-making analysis applied for experimental evaluation of fiber reinforced porous asphalt mixtures. Construction and Building Materials, 2020, 255, 119330.	3.2	7
120	Multi-Criteria Selection of Additives in Porous Asphalt Mixtures Using Mechanical, Hydraulic, Economic, and Environmental Indicators. Sustainability, 2021, 13, 2146.	1.6	7
121	The influence of paving-block shape on the infiltration capacity of permeable paving. Land Contamination and Reclamation, 2007, 15, 335-344.	0.4	7
122	Bridge–structure interaction analysis of a new bidirectional and continuous launching bridge mechanism. Engineering Structures, 2014, 59, 298-307.	2.6	6
123	Energy harvesting from vehicular traffic over speed bumps: a review. Proceedings of Institution of Civil Engineers: Energy, 2018, 171, 58-69.	0.5	6
124	Mechanical assessment of the induction heating as a method to accelerate the drying process of cold porous asphalt mixtures. Construction and Building Materials, 2019, 208, 646-650.	3.2	6
125	Influence of traffic delay produced during maintenance activities on the life cycle assessment of a road. Journal of Cleaner Production, 2020, 253, 120050.	4.6	6
126	Evaluation of the rejuvenation of asphalt by means of oil-saturated porous aggregates. Construction and Building Materials, 2022, 318, 125825.	3.2	6

#	Article	IF	CITATIONS
127	Laboratory analysis of a system for catchment, pre-treatment and treatment (SCPT) of runoff from impervious pavements. Water Science and Technology, 2010, 61, 1845-1852.	1.2	5
128	Sustainability in construction works: Reuse of sludge from tunnel boring in lime mortars. Applied Clay Science, 2015, 114, 402-406.	2.6	5
129	Complex Optimization of Heavy Duty Asphalt Pavement Types in DURABROADS Project. Transportation Research Procedia, 2016, 14, 3519-3526.	0.8	5
130	Technical feasibility for the replacement of high rates of natural aggregates in asphalt mixtures. International Journal of Pavement Engineering, 2021, 22, 940-949.	2.2	5
131	Influence of asphalt cement type and oven type on asphalt retention capacity of paving geotextiles. Geosynthetics International, 2006, 13, 83-86.	1.5	4
132	Técnicas para contener el manto de nieve en la zona de inicio de avalanchas. Revista De La Construccion, 2010, 9, 39-52.	0.5	4
133	Steady state numerical simulation of the particle collection efficiency of a new urban sustainable gravity settler using design of experiments by FVM. Applied Mathematics and Computation, 2011, 217, 8166-8178.	1.4	4
134	Numerical and experimental study of a new type of clip for joining cables. Engineering Structures, 2012, 44, 107-121.	2.6	4
135	New mechanism for continuous and bidirectional displacement of heavy structures: Design and analysis. Automation in Construction, 2014, 44, 47-55.	4.8	4
136	Environmental and mechanical aspects of an anchored mesh for stabilisation of a cliff at La Alhambra. Bulletin of Engineering Geology and the Environment, 2014, 73, 667-685.	1.6	4
137	Design of a new energy dissipating device and verification for use in rockfall protection barriers. Engineering Structures, 2019, 199, 109633.	2.6	4
138	Fatigue behaviour of adhesive bonds in tensile CFRP-metal double-strap joints with puddle iron plates taken from a 19th century bridge. Composite Structures, 2020, 251, 112600.	3.1	4
139	Effect of Different Types of "Dry Way―Additions in Porous Asphalt Mixtures. Materials, 2022, 15, 1549.	1.3	4
140	Stabilization of sludge from earth pressure balance for use in earth embankments. Applied Clay Science, 2011, 53, 533-537.	2.6	3
141	Improvement of a System for Catchment, Pretreatment, and Treatment of Runoff Water Using PIV Tests and Numerical Simulation. Journal of Irrigation and Drainage Engineering - ASCE, 2014, 140, 04014028.	0.6	3
142	A combination of DOE – multi-criteria decision making analysis applied to additive assessment in porous asphalt mixture. International Journal of Pavement Engineering, 2022, 23, 2489-2502.	2.2	3
143	Numerical and Experimental Evaluation of a CFRP Fatigue Strengthening for Stringer-Floor Beam Connections in a 19th Century Riveted Railway Bridge. Metals, 2021, 11, 603.	1.0	3
144	Design and Evaluation of Two Laboratory Tests for the Nets of a Flexible Anchored Slope Stabilization System. Geotechnical Testing Journal, 2009, 32, 315-324.	0.5	3

#	Article	IF	CITATIONS
145	FEM-based Numerical Simulation of Water Flow Through a Road Shoulder Structure. International Journal of Nonlinear Sciences and Numerical Simulation, 2014, 15, 57-67.	0.4	2
146	Decision aid system founded on nonlinear valuation, dispersion-based weighting and correlative aggregation for wire rope selection in slope stability cable nets. Expert Systems With Applications, 2016, 54, 148-154.	4.4	2
147	Bituminous mixtures with low percentage of natural aggregates and rubber modified bitumen with wax. Transportation Research Procedia, 2018, 33, 91-98.	0.8	2
148	Recyclability Potential of Induction-Healable Porous Asphalt Mixtures. Sustainability, 2020, 12, 9962.	1.6	2
149	Selection of membranes and linking method in slope stabilization systems for the reduction on the installation time using multi-criteria decision analysis. Ain Shams Engineering Journal, 2021, 12, 3471-3484.	3.5	2
150	Synthesis, characterisation and mechanical impact of novel capsules using porous aggregates containing asphalt rejuvenator as an effective way to restore aged binder properties. International Journal of Pavement Engineering, 0, , 1-18.	2.2	2
151	Restauración del Tajo de San Pedro en La Alhambra de Granada. Aspectos de cálculo. Informes De La Construccion, 2009, 61, 81-92.	0.1	2
152	3D numerical simulation of slope-flexible system interaction using a mixed FEM-SPH model. Ain Shams Engineering Journal, 2021, 13, 101592-101592.	3.5	2
153	ANÃLISIS TÉRMICO DE GEOSINTÉTICOS UTILIZADOS EN LA REHABILITACIÓN DE LA REHABILITACIÓN DE PAVIMENTOS. Ingeniare, 2009, 17, .	0.1	2
154	Closure to "Relationship between Urban Runoff Pollutant and Catchment Characteristics―by Jorge Rodriguez-Hernandez, Andrés H. Fernández-Barrera, Valerio C. A. Andrés-Valeri, Angel Vega-Zamanillo, and Daniel Castro-Fresno. Journal of Irrigation and Drainage Engineering - ASCE, 2015, 141, 07015016.	0.6	1
155	Laboratory and Statistical Analysis of the Fatigue Response of Self-Healing Asphalt Mixtures Containing Metal By-Products. Coatings, 2021, 11, 385.	1.2	1
156	Review of Climate Risk Analysis in Infrastructures. International Review of Civil Engineering, 2018, 9, 1.	0.3	1
157	A New Design Methodology for Improving Porous Concrete Properties to Achieve Multifunctional and Sustainable Pavements. Lecture Notes in Civil Engineering, 2020, , 491-499.	0.3	1
158	Nuevo método de lanzamiento y sistema de empuje de puentes metálicos. Bases conceptuales. Hormigon Y Acero, 2015, 66, 151-163.	0.1	0
159	New Bidirectional Heavy Device for Launching Bridges Based on Inverted Caterpillar Mechanism. Recent Patents on Mechanical Engineering, 2017, 10, .	0.2	0
160	New System for the Acceleration of the Airflow in Wind Turbines. Recent Patents on Mechanical Engineering, 2019, 12, 158-167.	0.2	0