Masaru K Hojo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3149037/publications.pdf

Version: 2024-02-01

623734 677142 31 542 14 22 citations h-index g-index papers 31 31 31 524 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Genomic and transcriptomic analyses of the subterranean termite $\langle i \rangle$ Reticulitermes speratus $\langle i \rangle$: Gene duplication facilitates social evolution. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	37
2	Ant nestmate discrimination: Studies on the CHC pheromone and its information reception and processing. Journal of Japan Association on Odor Environment, 2022, 53, 37-44.	0.0	0
3	Understanding of superorganisms: collective behavior, differentiation and social organization. Artificial Life and Robotics, 2022, 27, 204-212.	1.2	4
4	Individual experience influences reconstruction of division of labour under colony disturbance in a queenless ant species. Frontiers in Zoology, 2022, 19, .	2.0	3
5	Evolution of chemical interactions between ants and their mutualist partners. Current Opinion in Insect Science, 2022, 52, 100943.	4.4	4
6	Odor of achlorophyllous plants' seeds drives seedâ€dispersing ants. Ecology and Evolution, 2021, 11, 9308-9317.	1.9	1
7	Worker-dependent gut symbiosis in an ant. ISME Communications, 2021, 1, .	4.2	6
8	Worker propensity affects flexible task reversion in an ant. Behavioral Ecology and Sociobiology, 2020, 74, 1.	1.4	11
9	Characterization of Localization, Ligand Binding, and pH-Dependent Conformational Changes of Two Chemosensory Proteins Expressed in the Antennae of the Japanese Carpenter Ant, Camponotus Japonicus. Zoological Science, 2020, 37, 371.	0.7	1
10	Duplication and soldier-specific expression of geranylgeranyl diphosphate synthase genes in a nasute termite Nasutitermes takasagoensis. Insect Biochemistry and Molecular Biology, 2019, 111, 103177.	2.7	16
11	Markerless visual servo control of a servosphere for behavior observation of a variety of wandering animals. Advanced Robotics, 2019, 33, 183-194.	1.8	8
12	Putative Neural Network Within an Olfactory Sensory Unit for Nestmate and Non-nestmate Discrimination in the Japanese Carpenter Ant: The Ultra-structures and Mathematical Simulation. Frontiers in Cellular Neuroscience, 2018, 12, 310.	3.7	19
13	Regulation of neotenic differentiation through direct physical contact in the damp-wood termite Hodotermopsis sjostedti. Insectes Sociaux, 2017, 64, 393-401.	1.2	12
14	Social transmission of information about a mutualist via trophallaxis in ant colonies. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171367.	2.6	9
15	Antennal RNA-sequencing analysis reveals evolutionary aspects of chemosensory proteins in the carpenter ant, Camponotus japonicus. Scientific Reports, 2015, 5, 13541.	3.3	26
16	Suppressive effects of dRYamides on feeding behavior of the blowfly, Phormia regina. Zoological Letters, 2015, 1, 35.	1.3	20
17	Lycaenid Caterpillar Secretions Manipulate Attendant Ant Behavior. Current Biology, 2015, 25, 2260-2264.	3.9	56
18	Adoption of lycaenid <i><scp>N</scp>iphanda fusca</i> (<scp>L</scp> epidoptera:) Tj ETQq0 0 0 rgBT /Overlo (<scp>H</scp> ymenoptera: <scp>F</scp> ormicidae). Entomological Science, 2014, 17, 59-65.	ock 10 Tf 50 0.6	0 67 Td (<scp>) 7</scp>

 $(\ensuremath{\mathsf{<scp}}\xsp\mathsf{<\mathsf{/scp}}\xsp\mathsf{<\mathsf{menoptera:}}\xsp\mathsf{<\mathsf{/scp}}\xsp\mathsf{<\mathsf{menoptera:}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\xsp\mathsf{<\mathsf{-scp}}\$

#	Article	IF	CITATIONS
19	Neuronal Projections and Putative Interaction of Multimodal Inputs in the Subesophageal Ganglion in the Blowfly, Phormia regina. Chemical Senses, 2014, 39, 391-401.	2.0	11
20	Ants Use Partner Specific Odors to Learn to Recognize a Mutualistic Partner. PLoS ONE, 2014, 9, e86054.	2.5	36
21	Why do ants shift their foraging from extrafloral nectar to aphid honeydew?. Ecological Research, 2013, 28, 919-926.	1.5	28
22	Aphid Genotype Determines Intensity of Ant Attendance: Do Endosymbionts and Honeydew Composition Matter?. Annals of the Entomological Society of America, 2013, 106, 761-770.	2.5	17
23	Highâ€kevel expression of the <i>Geranylgeranyl diphosphate synthase</i> gene in the frontal gland of soldiers in <i>Reticulitermes speratus</i> (Isoptera: Rhinotermitidae). Archives of Insect Biochemistry and Physiology, 2011, 77, 17-31.	1.5	30
24	Chemical Identification and Ethological Function of Soldier-Specific Secretion in Japanese Subterranean Termite <i>Reticulitermes speratus </i> (Rhinotermitidae). Bioscience, Biotechnology and Biochemistry, 2011, 75, 1818-1822.	1.3	9
25	Reduced expression of <i>major royal jelly protein $1 < l$i>gene in the mushroom bodies of worker honeybees with reduced learning ability. Apidologie, 2010, 41, 194-202.</i>	2.0	43
26	Chemical disguise as particular caste of host ants in the ant inquiline parasite Niphanda fusca (Lepidoptera: Lycaenidae). Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 551-558.	2.6	34
27	Gustatory synergism in ants mediates a species-specific symbiosis with lycaenid butterflies. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2008, 194, 1043-1052.	1.6	14
28	Cloning and expression of a geranylgeranyl diphosphate synthase gene: insights into the synthesis of termite defence secretion. Insect Molecular Biology, 2007, 16, 121-131.	2.0	31
29	Herbivory damage does not indirectly influence the composition or excretion of aphid honeydew. Population Ecology, 2006, 48, 245-250.	1.2	2
30	Identification of soldier-specific genes in the nasute termite Nasutitermes takasagoensis (Isoptera:) Tj ETQq0 0	0 rgBT /Ov	erlack 10 Tf 5
31	Identification of soldier caste-specific protein in the frontal gland of nasute termite Nasutitermes takasagoensis (Isoptera: Termitidae). Insect Biochemistry and Molecular Biology, 2005, 35, 347-354.	2.7	32