
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3148941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Parker Solar Probe Evidence for the Absence of Whistlers Close to the Sun to Scatter Strahl and to Regulate Heat Flux. Astrophysical Journal Letters, 2022, 924, L33.	8.3	19
2	Improving the Alfvén Wave Solar Atmosphere Model Based on Parker Solar Probe Data. Astrophysical Journal, 2022, 925, 146.	4.5	16
3	Flux Rope Merging and the Structure of Switchbacks in the Solar Wind. Astrophysical Journal, 2022, 925, 213.	4.5	11
4	Sub-Alfvénic Solar Wind Observed by the Parker Solar Probe: Characterization of Turbulence, Anisotropy, Intermittency, and Switchback. Astrophysical Journal Letters, 2022, 926, L1.	8.3	28
5	Langmuir-Slow Extraordinary Mode Magnetic Signature Observations with Parker Solar Probe. Astrophysical Journal, 2022, 927, 95.	4.5	4
6	First Results From the SCM Searchâ€Coil Magnetometer on Parker Solar Probe. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	9
7	Plasma Parameters From Quasiâ€Thermal Noise Observed by Parker Solar Probe: A New Model for the Antenna Response. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	2
8	Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7. Astrophysical Journal, 2022, 927, 62.	4.5	3
9	Parker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Nearâ€5un Heliospheric Current Sheet. Geophysical Research Letters, 2022, 49, .	4.0	15
10	Direct First Parker Solar Probe Observation of the Interaction of Two Successive Interplanetary Coronal Mass Ejections in 2020 November. Astrophysical Journal, 2022, 930, 88.	4.5	14
11	Discrepancy between the Low-frequency Cutoffs of Type III Radio Bursts Based on Simultaneous Observations by WIND and PSP. Astrophysical Journal Letters, 2022, 932, L26.	8.3	2
12	Radial Evolution of a CIR: Observations From a Nearly Radially Aligned Event Between Parker Solar Probe and STEREOâ€A. Geophysical Research Letters, 2021, 48, e2020GL091376.	4.0	16
13	The Encounter of the Parker Solar Probe and a Comet-like Object Near the Sun: Model Predictions and Measurements. Astrophysical Journal, 2021, 910, 7.	4.5	4
14	Evidence of Subprotonâ€Scale Magnetic Holes in the Venusian Magnetosheath. Geophysical Research Letters, 2021, 48, e2020GL090329.	4.0	18
15	Parker Solar Probe Evidence for Scattering of Electrons in the Young Solar Wind by Narrowband Whistler-mode Waves. Astrophysical Journal Letters, 2021, 911, L29.	8.3	24
16	Nonâ€Detection of Lightning During the Second Parker Solar Probe Venus Gravity Assist. Geophysical Research Letters, 2021, 48, e2020GL091751.	4.0	4
17	Evolution of Solar Wind Turbulence from 0.1 to 1 au during the First Parker Solar Probe–Solar Orbiter Radial Alignment. Astrophysical Journal Letters, 2021, 912, L21.	8.3	49
18	Periodicities in an active region correlated with Type III radio bursts observed by Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A6.	5.1	13

#	Article	IF	CITATIONS
19	Wave-particle energy transfer directly observed in an ion cyclotron wave. Astronomy and Astrophysics, 2021, 650, A10.	5.1	12
20	Magnetic increases with central current sheets: observations with Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A11.	5.1	8
21	Electron Bernstein waves and narrowband plasma waves near the electron cyclotron frequency in the near-Sun solar wind. Astronomy and Astrophysics, 2021, 650, A97.	5.1	12
22	Energetic particle behavior in near-Sun magnetic field switchbacks from PSP. Astronomy and Astrophysics, 2021, 650, L4.	5.1	12
23	Alfvénic versus non-Alfvénic turbulence in the inner heliosphere as observed by Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A21.	5.1	29
24	Switchbacks as signatures of magnetic flux ropes generated by interchange reconnection in the corona. Astronomy and Astrophysics, 2021, 650, A2.	5.1	80
25	Whistler wave occurrence and the interaction with strahl electrons during the first encounter of Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A9.	5.1	22
26	Narrowband oblique whistler-mode waves: comparing properties observed by Parker Solar Probe at <0.3 AU and STEREO at 1 AU. Astronomy and Astrophysics, 2021, 650, A8.	5.1	20
27	The active region source of a type III radio storm observed by Parker Solar Probe during encounter 2. Astronomy and Astrophysics, 2021, 650, A7.	5.1	17
28	Switchbacks: statistical properties and deviations from Alfvénicity. Astronomy and Astrophysics, 2021, 650, A3.	5.1	37
29	Parker Solar Probe observations of He/H abundance variations in SEP events inside 0.5 au. Astronomy and Astrophysics, 2021, 650, A23.	5.1	13
30	Statistical analysis of orientation, shape, and size of solar wind switchbacks. Astronomy and Astrophysics, 2021, 650, A1.	5.1	34
31	Detection of small magnetic flux ropes from the third and fourth Parker Solar Probe encounters. Astronomy and Astrophysics, 2021, 650, A12.	5.1	35
32	Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet. Astronomy and Astrophysics, 2021, 650, A13.	5.1	23
33	Measurement of the open magnetic flux in the inner heliosphere down to 0.13 AU. Astronomy and Astrophysics, 2021, 650, A18.	5.1	26
34	The contribution of alpha particles to the solar wind angular momentum flux in the inner heliosphere. Astronomy and Astrophysics, 2021, 650, A17.	5.1	11
35	Solar wind energy flux observations in the inner heliosphere: first results from Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A14.	5.1	12
36	A new view of energetic particles from stream interaction regions observed by Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A24.	5.1	15

#	Article	IF	CITATIONS
37	Direct evidence for magnetic reconnection at the boundaries of magnetic switchbacks with Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A5.	5.1	27
38	PSP/IS⊙IS observations of the 29 November 2020 solar energetic particle event. Astronomy and Astrophysics, 2021, 656, A29.	5.1	15
39	Dust Directionality and an Anomalous Interplanetary Dust Population Detected by the Parker Solar Probe. Planetary Science Journal, 2021, 2, 186.	3.6	14
40	Characteristic Scales of Magnetic Switchback Patches Near the Sun and Their Possible Association With Solar Supergranulation and Granulation. Astrophysical Journal, 2021, 919, 96.	4.5	50
41	Kinetic‣cale Turbulence in the Venusian Magnetosheath. Geophysical Research Letters, 2021, 48, e2020GL090783.	4.0	11
42	Simulations of radio-wave anisotropic scattering to interpret type III radio burst data from Solar Orbiter, Parker Solar Probe, STEREO, and Wind. Astronomy and Astrophysics, 2021, 656, A34.	5.1	12
43	Exploring the Solar Wind from Its Source on the Corona into the Inner Heliosphere during the First Solar Orbiter–Parker Solar Probe Quadrature. Astrophysical Journal Letters, 2021, 920, L14.	8.3	25
44	Origin of the Weak Plasma Emission Line Detected by Voyager 1 in the Interstellar Medium: Evidence for Suprathermal Electrons. Astrophysical Journal, 2021, 921, 62.	4.5	10
45	Ambipolar Electric Field and Potential in the Solar Wind Estimated from Electron Velocity Distribution Functions. Astrophysical Journal, 2021, 921, 83.	4.5	14
46	<i>Parker Solar Probe</i> Enters the Magnetically Dominated Solar Corona. Physical Review Letters, 2021, 127, 255101.	7.8	104
47	Plasma Double Layers at the Boundary Between Venus and the Solar Wind. Geophysical Research Letters, 2020, 47, e2020GL090115.	4.0	16
48	Parker Solar Probe Observations of Proton Beams Simultaneous with Ion-scale Waves. Astrophysical Journal, Supplement Series, 2020, 248, 5.	7.7	62
49	Switchbacks in the Solar Magnetic Field: Their Evolution, Their Content, and Their Effects on the Plasma. Astrophysical Journal, Supplement Series, 2020, 246, 68.	7.7	83
50	The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe's First Orbit. Astrophysical Journal Letters, 2020, 894, L19.	8.3	39
51	In Situ Observations of Interplanetary Dust Variability in the Inner Heliosphere. Astrophysical Journal, 2020, 892, 115.	4.5	22
52	A Merged Search oil and Fluxgate Magnetometer Data Product for Parker Solar Probe FIELDS. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027813.	2.4	31
53	MHD Mode Composition in the Inner Heliosphere from the <i>Parker Solar Probe</i> 's First Perihelion. Astrophysical Journal, Supplement Series, 2020, 246, 71.	7.7	17
54	Proton Temperature Anisotropy Variations in Inner Heliosphere Estimated with the First <i>Parker Solar Probe</i> Observations. Astrophysical Journal, Supplement Series, 2020, 246, 70.	7.7	56

#	Article	IF	CITATIONS
55	Sunward-propagating Whistler Waves Collocated with Localized Magnetic Field Holes in the Solar Wind: Parker Solar Probe Observations at 35.7 R _⊙ Radii. Astrophysical Journal Letters, 2020, 891, L20.	8.3	46
56	Examining Dust Directionality with the Parker Solar Probe FIELDS Instrument. Astrophysical Journal, Supplement Series, 2020, 246, 51.	7.7	26
57	Observations of Energetic-particle Population Enhancements along Intermittent Structures near the Sun from the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 61.	7.7	25
58	Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence. Physical Review Letters, 2020, 125, 025102.	7.8	29
59	Relating Streamer Flows to Density and Magnetic Structures at the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 37.	7.7	52
60	Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 63.	7.7	34
61	Density Fluctuations in the Solar Wind Based on Type III Radio Bursts Observed by Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 57.	7.7	45
62	Clustering of Intermittent Magnetic and Flow Structures near Parker Solar Probe's First Perihelion—A Partial-variance-of-increments Analysis. Astrophysical Journal, Supplement Series, 2020, 246, 31.	7.7	37
63	First In Situ Measurements of Electron Density and Temperature from Quasi-thermal Noise Spectroscopy with Parker Solar Probe/FIELDS. Astrophysical Journal, Supplement Series, 2020, 246, 44.	7.7	106
64	Observations of Heating along Intermittent Structures in the Inner Heliosphere from PSP Data. Astrophysical Journal, Supplement Series, 2020, 246, 46.	7.7	26
65	The Heliospheric Current Sheet in the Inner Heliosphere Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 47.	7.7	50
66	The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 53.	7.7	166
67	Measures of Scale-dependent Alfvénicity in the First <i>PSP</i> Solar Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 58.	7.7	51
68	Source and Propagation of a Streamer Blowout Coronal Mass Ejection Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 69.	7.7	29
69	Solar Wind Streams and Stream Interaction Regions Observed by the Parker Solar Probe with Corresponding Observations at 1 au. Astrophysical Journal, Supplement Series, 2020, 246, 36.	7.7	43
70	Ion-scale Electromagnetic Waves in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 66.	7.7	67
71	Cross Helicity Reversals in Magnetic Switchbacks. Astrophysical Journal, Supplement Series, 2020, 246, 67.	7.7	61
72	The Role of Alfvén Wave Dynamics on the Large-scale Properties of the Solar Wind: Comparing an MHD Simulation with Parker Solar Probe E1 Data. Astrophysical Journal, Supplement Series, 2020, 246, 24.	7.7	66

#	Article	IF	CITATIONS
73	Solar Energetic Particles Produced by a Slow Coronal Mass Ejection at â^¼0.25 au. Astrophysical Journal, Supplement Series, 2020, 246, 29.	7.7	35
74	³ He-rich Solar Energetic Particle Observations at the Parker Solar Probe and near Earth. Astrophysical Journal, Supplement Series, 2020, 246, 42.	7.7	27
75	Enhanced Energy Transfer Rate in Solar Wind Turbulence Observed near the Sun from <i>Parker Solar Probe</i> . Astrophysical Journal, Supplement Series, 2020, 246, 48.	7.7	56
76	Statistics and Polarization of Type III Radio Bursts Observed in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 49.	7.7	35
77	CME-associated Energetic Ions at 0.23 au: Consideration of the Auroral Pressure Cooker Mechanism Operating in the Low Corona as a Possible Energization Process. Astrophysical Journal, Supplement Series, 2020, 246, 59.	7.7	21
78	Energetic Particle Increases Associated with Stream Interaction Regions. Astrophysical Journal, Supplement Series, 2020, 246, 20.	7.7	31
79	Plasma Waves near the Electron Cyclotron Frequency in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 21.	7.7	30
80	Electrons in the Young Solar Wind: First Results from the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 22.	7.7	99
81	Identification of Magnetic Flux Ropes from Parker Solar Probe Observations during the First Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 26.	7.7	57
82	The Enhancement of Proton Stochastic Heating in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 30.	7.7	23
83	Magnetic Field Kinks and Folds in the Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 32.	7.7	86
84	Seed Population Preconditioning and Acceleration Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 33.	7.7	21
85	Parker Solar Probe In Situ Observations of Magnetic Reconnection Exhausts during Encounter 1. Astrophysical Journal, Supplement Series, 2020, 246, 34.	7.7	65
86	Observations of the 2019 April 4 Solar Energetic Particle Event at the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 35.	7.7	27
87	Switchbacks in the Near-Sun Magnetic Field: Long Memory and Impact on the Turbulence Cascade. Astrophysical Journal, Supplement Series, 2020, 246, 39.	7.7	152
88	Predicting the Solar Wind at the Parker Solar Probe Using an Empirically Driven MHD Model. Astrophysical Journal, Supplement Series, 2020, 246, 40.	7.7	14
89	Properties of Suprathermal-through-energetic He Ions Associated with Stream Interaction Regions Observed over the Parker Solar Probe's First Two Orbits. Astrophysical Journal, Supplement Series, 2020, 246, 56.	7.7	29
90	Coronal Electron Temperature Inferred from the Strahl Electrons in the Inner Heliosphere: Parker Solar Probe and Helios Observations. Astrophysical Journal, 2020, 892, 88.	4.5	34

#	Article	IF	CITATIONS
91	Localized Magnetic-field Structures and Their Boundaries in the Near-Sun Solar Wind from Parker Solar Probe Measurements. Astrophysical Journal, 2020, 893, 93.	4.5	44
92	Electron Energy Partition across Interplanetary Shocks. III. Analysis. Astrophysical Journal, 2020, 893, 22.	4.5	21
93	An In Situ Interplanetary "U-burst― Observation and Results. Astrophysical Journal, 2020, 897, 170.	4.5	1
94	The Electromagnetic Signature of Outward Propagating Ion-scale Waves. Astrophysical Journal, 2020, 899, 74.	4.5	23
95	Small Electron Events Observed by Parker Solar Probe/IS⊙IS during Encounter 2. Astrophysical Journal, 2020, 902, 20.	4.5	9
96	Small-scale Magnetic Flux Ropes in the First Two Parker Solar Probe Encounters. Astrophysical Journal, 2020, 903, 76.	4.5	22
97	Magnetic Connectivity of the Ecliptic Plane within 0.5 au: Potential Field Source Surface Modeling of the First Parker Solar Probe Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 23.	7.7	100
98	Sharp Alfvénic Impulses in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 45.	7.7	115
99	Time Domain Structures and Dust in the Solar Vicinity: Parker Solar Probe Observations. Astrophysical Journal, Supplement Series, 2020, 246, 50.	7.7	10
100	Kinetic-scale Spectral Features of Cross Helicity and Residual Energy in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 52.	7.7	10
101	Exploring Solar Wind Origins and Connecting Plasma Flows from the <i>Parker Solar Probe</i> to 1 au: Nonspherical Source Surface and Alfvénic Fluctuations. Astrophysical Journal, Supplement Series, 2020, 246, 54.	7.7	46
102	Anticorrelation between the Bulk Speed and the Electron Temperature in the Pristine Solar Wind: First Results from the <i>Parker Solar Probe</i> and Comparison with <i>Helios</i> . Astrophysical Journal, Supplement Series, 2020, 246, 62.	7.7	55
103	The Radial Dependence of Proton-scale Magnetic Spectral Break in Slow Solar Wind during <i>PSP</i> Encounter 2. Astrophysical Journal, Supplement Series, 2020, 246, 55.	7.7	36
104	Electron Energy Partition across Interplanetary Shocks. I. Methodology and Data Product. Astrophysical Journal, Supplement Series, 2019, 243, 8.	7.7	57
105	The Space Physics Environment Data Analysis System (SPEDAS). Space Science Reviews, 2019, 215, 9.	8.1	332
106	Self-induced Scattering of Strahl Electrons in the Solar Wind. Astrophysical Journal, 2019, 886, 136.	4.5	54
107	Electron Energy Partition across Interplanetary Shocks. II. Statistics. Astrophysical Journal, Supplement Series, 2019, 245, 24.	7.7	40
108	Probing the energetic particle environment near the Sun. Nature, 2019, 576, 223-227.	27.8	103

#	Article	IF	CITATIONS
109	Alfvénic velocity spikes and rotational flows in the near-Sun solar wind. Nature, 2019, 576, 228-231.	27.8	311
110	Highly structured slow solar wind emerging from an equatorial coronal hole. Nature, 2019, 576, 237-242.	27.8	401
111	Whistler Wave Generation by Halo Electrons in the Solar Wind. Astrophysical Journal Letters, 2019, 870, L6.	8.3	53
112	The Statistical Properties of Solar Wind Temperature Parameters Near 1 au. Astrophysical Journal, Supplement Series, 2018, 236, 41.	7.7	94
113	The Solar Probe Plus Radio Frequency Spectrometer: Measurement requirements, analog design, and digital signal processing. Journal of Geophysical Research: Space Physics, 2017, 122, 2836-2854.	2.4	74
114	Parametric decay of currentâ€driven Langmuir waves in plateau plasmas: Relevance to solar wind and foreshock events. Journal of Geophysical Research: Space Physics, 2017, 122, 7005-7020.	2.4	2
115	Quasiâ€thermal noise measurements on STEREO: Kinetic temperature deduction using electron shot noise model. Journal of Geophysical Research: Space Physics, 2016, 121, 129-139.	2.4	12
116	The FIELDS Instrument Suite for Solar Probe Plus. Space Science Reviews, 2016, 204, 49-82.	8.1	521
117	Self-Similar Theory of Thermal Conduction and Application to the Solar Wind. Physical Review Letters, 2015, 114, 245003.	7.8	17
118	STEREO-Wind Radio Positioning of an Unusually Slow Drifting Event. Solar Physics, 2015, 290, 891-901.	2.5	7
119	CORE ELECTRON HEATING IN SOLAR WIND RECONNECTION EXHAUSTS. Astrophysical Journal Letters, 2014, 791, L17.	8.3	12
120	Spinâ€modulated spacecraft floating potential: Observations and effects on electron moments. Journal of Geophysical Research: Space Physics, 2014, 119, 647-657.	2.4	28
121	Shocklets, SLAMS, and fieldâ€aligned ion beams in the terrestrial foreshock. Journal of Geophysical Research: Space Physics, 2013, 118, 957-966.	2.4	60
122	ELECTRON HEAT CONDUCTION IN THE SOLAR WIND: TRANSITION FROM SPITZER-HÃ, RM TO THE COLLISIONLESS LIMIT. Astrophysical Journal Letters, 2013, 769, L22.	8.3	81
123	Electromagnetic waves and electron anisotropies downstream of supercritical interplanetary shocks. Journal of Geophysical Research: Space Physics, 2013, 118, 5-16.	2.4	67
124	Quiet-time solar wind superhalo electrons at solar minimum. , 2013, , .		3
125	Observations of electromagnetic whistler precursors at supercritical interplanetary shocks. Geophysical Research Letters, 2012, 39, .	4.0	79
126	QUIET-TIME INTERPLANETARY â^1/42-20 keV SUPERHALO ELECTRONS AT SOLAR MINIMUM. Astrophysical Journal Letters, 2012, 753, L23.	8.3	114

#	Article	IF	CITATIONS
127	An asymmetry of the electron foreshock due to the strahl. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	4
128	Langmuir waves upstream of interplanetary shocks: Dependence on shock and plasma parameters. Journal of Geophysical Research, 2010, 115, .	3.3	31
129	The Electric Antennas for the STEREO/WAVES Experiment. Space Science Reviews, 2008, 136, 529-547.	8.1	107
130	S/WAVES: The Radio and Plasma Wave Investigation onÂtheÂSTEREO Mission. Space Science Reviews, 2008, 136, 487-528.	8.1	313
131	Magnetospheric electric field variations caused by storm-time shock fronts. Advances in Space Research, 2008, 42, 181-191.	2.6	12
132	Structure on Interplanetary Shock Fronts: Type II Radio Burst Source Regions. Astrophysical Journal, 2008, 676, 1330-1337.	4.5	44
133	S/WAVES: The Radio and Plasma Wave Investigation onÂtheÂSTEREO Mission. , 2008, , 487-528.		2
134	The Electric Antennas for the STEREO/WAVES Experiment. , 2008, , 529-547.		2
135	Rapid fluctuations of stratospheric electric field following a solar energetic particle event. Geophysical Research Letters, 2006, 33, .	4.0	27