Francois Roger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3148912/publications.pdf

Version: 2024-02-01

			147801		197818	
83	2,765		31		49	
papers	citations		h-index		g-index	
89	89		89		3325	
all docs	docs citations		times ranked		citing authors	

#	Article	IF	CITATIONS
1	Why Do We Need to Evaluate Health Surveillance Systems?. , 2022, , 3-24.		O
2	Intensification des systÃ ⁻ mes d'élevage et risques pandémiques. Cahiers Agricultures, 2022, 31, 16.	0.9	1
3	Mapping of Ebola virus spillover: Suitability and seasonal variability at the landscape scale. PLoS Neglected Tropical Diseases, 2021, 15, e0009683.	3.0	11
4	Antimicrobial Resistance in Africaâ€"How to Relieve the Burden on Family Farmers. Emerging Infectious Diseases, 2021, 27, 2515-2520.	4.3	8
5	Will the COVID-19 crisis trigger a One Health coming-of-age?. Lancet Planetary Health, The, 2020, 4, e377-e378.	11.4	32
6	Editorial: Peste des Petits Ruminants (PPR): Generating Evidence to Support Eradication Efforts. Frontiers in Veterinary Science, 2020, 7, 636509.	2.2	2
7	Typological analysis of public-private partnerships in the veterinary domain. PLoS ONE, 2019, 14, e0224079.	2.5	11
8	Epidemiological Survey of Peste des Petits Ruminants in Ethiopia: Cattle as Potential Sentinel for Surveillance. Frontiers in Veterinary Science, 2019, 6, 302.	2.2	13
9	Strengthening the global health dialogue: linking research networks in the Global South. Perspective, 2019, , 1-4.	0.3	O
10	MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3144-3149.	7.1	142
11	Survey of Ebola Viruses in Frugivorous and Insectivorous Bats in Guinea, Cameroon, and the Democratic Republic of the Congo, 2015–2017. Emerging Infectious Diseases, 2018, 24, 2228-2240.	4.3	66
12	Ebola Virus Maintenance: If Not (Only) Bats, What Else?. Viruses, 2018, 10, 549.	3.3	44
13	A dynamic model of transmission and elimination of peste des petits ruminants in Ethiopia. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8454-8459.	7.1	50
14	Strengthening health decision-making at the territorial level: Operational support for spatial multi-criteria evaluation. Perspective, 2018, , 1-4.	0.3	3
15	Pig empire under infectious threat: risk of African swine fever introduction into the People's Republic of China. Veterinary Record, 2017, 181, 117-117.	0.3	54
16	Antimicrobial policy interventions in food animal production in South East Asia. BMJ: British Medical Journal, 2017, 358, j3544.	2.3	54
17	A pilot study to delimit tsetse target populations in Zimbabwe. PLoS Neglected Tropical Diseases, 2017, 11, e0005566.	3.0	8
18	Advocacy for identifying certain animal diseases as "neglected― PLoS Neglected Tropical Diseases, 2017, 11, e0005843.	3.0	8

#	Article	IF	Citations
19	Antimicrobials in agriculture: reducing their use while limiting health and socioeconomic risks in the countries of the South. Perspective, 2017, , 1-4.	0.3	1
20	Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015. Eurosurveillance, 2017, 22, .	7.0	58
21	Absence of Middle East Respiratory Syndrome Coronavirus in Camelids, Kazakhstan, 2015. Emerging Infectious Diseases, 2016, 22, 555-557.	4.3	37
22	MERS-CoV at the Animal–Human Interface: Inputs on Exposure Pathways from an Expert-Opinion Elicitation. Frontiers in Veterinary Science, 2016, 3, 88.	2.2	19
23	One Health and EcoHealth: the same wine in different bottles?. Infection Ecology and Epidemiology, 2016, 6, 30978.	0.8	36
24	Added Value of Avian Influenza (H5) Day-Old Chick Vaccination for Disease Control in Egypt. Avian Diseases, 2016, 60, 245-252.	1.0	8
25	Influenza aviaire au Vietnam : état des lieux et complémentarité des activités de surveillance et des études épidémiologiques (2007–2011). Revue D'Elevage Et De Medecine Veterinaire Des Pays Tropicaux, 2016, 68, 175.	, 0.5	2
26	A framework to promote collective action within the One Health community of practice: Using participatory modelling to enable interdisciplinary, cross-sectoral and multi-level integration. One Health, 2015, 1, 44-48.	3.4	55
27	Seroprevalence of contagious bovine pleuropneumonia (CBPP) in Mali. Tropical Animal Health and Production, 2015, 47, 395-402.	1.4	10
28	Evaluation of the safety, immunogenicity and efficacy of three capripoxvirus vaccine strains against lumpy skin disease virus. Vaccine, 2015, 33, 3256-3261.	3.8	63
29	Collective resistance to HPAI H5N1 surveillance in the Thai cockfighting community: Insights from a social anthropology study. Preventive Veterinary Medicine, 2015, 120, 106-114.	1.9	17
30	How to reach the poor? Surveillance in low-income countries, lessons from experiences in Cambodia and Madagascar. Preventive Veterinary Medicine, 2015, 120, 12-26.	1.9	42
31	A Systematic Scoping Study of the Socioâ€Economic Impact of Rift Valley Fever: Research Gaps and Needs. Zoonoses and Public Health, 2015, 62, 309-325.	2.2	68
32	Methods for Prioritisation of Diseases: Case Study of Zoonoses in Southeast Asia., 2015, , 231-256.		1
33	Control of endemic tropical diseases. Identifying certain animal diseases as "neglected". Perspective, 2015, , 1-4.	0.3	1
34	Zero-inflated models for identifying disease risk factors when case detection is imperfect: Application to highly pathogenic avian influenza H5N1 in Thailand. Preventive Veterinary Medicine, 2014, 114, 28-36.	1.9	20
35	Abondance du potamochère, Potamochoerus larvatus, dans les savanes du Nord-Ouest de Madagascar et risques épidémiologiques associés. Bois Et Forets Des Tropiques, 2014, 320, 75.	0.2	2
36	Serologic evidence of human influenza virus infections in swine populations, Cambodia. Influenza and Other Respiratory Viruses, 2013, 7, 271-279.	3.4	12

3

#	Article	IF	CITATIONS
37	Review of the sylvatic cycle of African swine fever in sub-Saharan Africa and the Indian ocean. Virus Research, 2013, 173, 212-227.	2.2	124
38	Application of loop analysis for the qualitative assessment of surveillance and control in veterinary epidemiology. Emerging Themes in Epidemiology, 2013, 10, 7.	2.7	4
39	Household-level risk factors for Newcastle disease seropositivity and incidence of Newcastle disease virus exposure in backyard chicken flocks in Eastern Shewa zone, Ethiopia. Preventive Veterinary Medicine, 2013, 109, 312-320.	1.9	20
40	Practices associated with Highly Pathogenic Avian Influenza spread in traditional poultry marketing chains: Social and economic perspectives. Acta Tropica, 2013, 126, 43-53.	2.0	41
41	Zoonoses in South-East Asia: a regional burden, a global threat. Animal Health Research Reviews, 2013, 14, 40-67.	3.1	31
42	A meta-analysis of observational epidemiological studies of Newcastle disease in African agro-systems, 1980–2009. Epidemiology and Infection, 2013, 141, 1117-1133.	2.1	31
43	Evaluation of the vaccination efficacy against H5N1 in domestic poultry in the Red River Delta in Vietnam. Epidemiology and Infection, 2013, 141, 776-788.	2.1	22
44	Avian Influenza Vaccination of Poultry and Passive Case Reporting, Egypt. Emerging Infectious Diseases, 2012, 18, 2076-2078.	4.3	23
45	Estimating spatial and temporal variations of the reproduction number for highly pathogenic avian influenza H5N1 epidemic in Thailand. Preventive Veterinary Medicine, 2012, 106, 143-151.	1.9	16
46	Evidence for freedom from swine influenza in a remote area of Northern Vietnam. Acta Tropica, 2012, 122, 160-163.	2.0	5
47	Evaluating the efficiency of participatory epidemiology to estimate the incidence and impacts of foot-and-mouth disease among livestock owners in Cambodia. Acta Tropica, 2012, 123, 31-38.	2.0	27
48	Lumpy skin disease in Ethiopia: Seroprevalence study across different agro-climate zones. Acta Tropica, 2012, 123, 101-106.	2.0	32
49	Can Geographical Factors Determine the Choices of Farmers in the Ethiopian Highlands to Trade in Livestock Markets?. PLoS ONE, 2012, 7, e30710.	2.5	10
50	Performance evaluation of two serological tests for contagious bovine pleuropneumonia (CBPP) detection in an enzootic area using a Bayesian framework. Tropical Animal Health and Production, 2012, 44, 1233-1238.	1.4	8
51	Transmission of pandemic influenza H1N1 (2009) in Vietnamese swine in 2009–2010. Influenza and Other Respiratory Viruses, 2012, 6, 348-357.	3.4	30
52	A captureâ€"recapture analysis in a challenging environment: Assessing the epidemiological situation of foot-and-mouth disease in Cambodia. Preventive Veterinary Medicine, 2012, 105, 235-243.	1.9	25
53	Optimizing early detection of avian influenza H5N1 in backyard and free-range poultry production systems in Thailand. Preventive Veterinary Medicine, 2012, 105, 223-234.	1.9	20
54	Evaluation of serological tests for H5N1 avian influenza on field samples from domestic poultry populations in Vietnam: Consequences for surveillance. Veterinary Microbiology, 2012, 156, 277-284.	1.9	25

#	Article	IF	CITATIONS
55	Control of zoonotic diseases in Africa and Asia. The contribution of research to One Health. Perspective, 2012, , 1-4.	0.3	1
56	Risk factors for highly pathogenic avian influenza (HPAI) H5N1 infection in backyard chicken farms, Thailand. Acta Tropica, 2011, 118, 209-216.	2.0	60
57	Looking for avian influenza in remote areas. A case study in Northern Vietnam. Acta Tropica, 2011, 120, 160-166.	2.0	13
58	Herd contact structure based on shared use of water points and grazing points in the Highlands of Ethiopia. Epidemiology and Infection, 2011, 139, 875-885.	2.1	15
59	Epidemiological aspects and financial impact of lumpy skin disease in Ethiopia. Preventive Veterinary Medicine, 2011, 102, 274-283.	1.9	74
60	Risk assessment of the introduction of Rift Valley fever from the Horn of Africa to Yemen via legal trade of small ruminants. Tropical Animal Health and Production, 2011, 43, 471-480.	1.4	50
61	Seroprevalence of African Swine Fever in Senegal, 2006. Emerging Infectious Diseases, 2011, 17, 49-54.	4.3	28
62	Orbiviruses in Rusa Deer, Mauritius, 2007. Emerging Infectious Diseases, 2011, 17, 312-313.	4.3	7
63	Swine influenza surveillance in East and Southeast Asia: a systematic review. Animal Health Research Reviews, 2011, 12, 213-223.	3.1	22
64	Can Environmental and Socioeconomic Factors Explain the Recent Emergence of Rift Valley Fever in Yemen, 2000–2001?. Vector-Borne and Zoonotic Diseases, 2011, 11, 773-779.	1.5	36
65	Risk factors associated with observed clinical lumpy skin disease in Ethiopia. Epidemiology and Infection, 2010, 138, 1657-1666.	2.1	83
66	First detection of African Swine Fever Virus in Ornithodoros porcinus in Madagascar and new insights into tick distribution and taxonomy. Parasites and Vectors, 2010, 3, 115.	2.5	47
67	Anthropogenic factors and the risk of highly pathogenic avian influenza H5N1: prospects from a spatial-based model. Veterinary Research, 2010, 41, 28.	3.0	78
68	Avian influenza vaccination in Egypt: Limitations of the current strategy. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2009, 03, 198-204.	0.1	65
69	African swine fever: how can global spread be prevented?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2683-2696.	4.0	387
70	Scientific review on African Swine Fever. EFSA Supporting Publications, 2009, 6, 5E.	0.7	21
71	Using remote sensing to map larval and adult populations of Anopheles hyrcanus (Diptera: Culicidae) a potential malaria vector in Southern France. International Journal of Health Geographics, 2008, 7, 9.	2.5	43
72	Peste des Petits Ruminants (PPR) in Ethiopia: Analysis of a national serological survey. BMC Veterinary Research, 2008, 4, 34.	1.9	42

#	Article	IF	CITATIONS
73	African Swine Fever Virus DNA in Soft Ticks, Senegal. Emerging Infectious Diseases, 2007, 13, 1928-1931.	4.3	37
74	Use of high spatial resolution satellite imagery to characterize landscapes at risk for bluetongue. Veterinary Research, 2007, 38, 669-683.	3.0	35
75	A multiple fine-scale satellite-derived landscape approach: example of bluetongue modelling in Corsica. Veterinaria Italiana, 2007, 43, 699-707.	0.5	3
76	Risk Analysis and Bovine Tuberculosis, a Re-emerging Zoonosis. Annals of the New York Academy of Sciences, 2006, 1081, 61-73.	3.8	85
77	Performance evaluation of a competitive ELISA test used for Bluetongue antibody detection in France, a recently infected area. Veterinary Microbiology, 2006, 118, 57-66.	1.9	12
78	Emergence de la fièvre catarrhale ovine dans le Bassin mÃ@diterranÃ@en et surveillance entomologique en France. Revue D'Elevage Et De Medecine Veterinaire Des Pays Tropicaux, 2005, 58, 125.	0.5	4
79	Surveys Concerning the Needs for and Evaluation of Distance Learning in Veterinary Epidemiology. Journal of Veterinary Medical Education, 2005, 32, 68-71.	0.6	O
80	Ornithodoros porcinus ticks, bushpigs, and African swine fever in Madagascar. Experimental and Applied Acarology, 2001, 25, 263-269.	1.6	32
81	Comparison between comparative tuberculin and gamma-interferon tests for the diagnosis of bovine tuberculosis in Ethiopia. Tropical Animal Health and Production, 2000, 32, 267-276.	1.4	27
82	Combating and Predicting Rift Valley Fever Outbreaks: a Scientific and Geopolitical Challenge for the Future., 0,, 189-212.		3
83	The Epidemic of Covid-19 in Africa: Demographic Effect, Under-Reporting of Cases, Dynamical Complexity and Mitigation Strategies Impact. SSRN Electronic Journal, 0, , .	0.4	O