
Eva S R Skiöldebrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3148568/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Conditioned serum in vitro treatment of chondrocyte pellets and osteoarthritic explants. Equine Veterinary Journal, 2023, 55, 325-335.	0.9	3
2	Nerve growth factor receptors in equine synovial membranes vary with osteoarthritic disease severity. Journal of Orthopaedic Research, 2023, 41, 316-324.	1.2	5
3	Conditioned serum <i>in vitro</i> treatment of chondrocyte pellets and osteoarthritic explants. Equine Veterinary Journal, 2022, , .	0.9	1
4	Nerve growth factor in the equine joint. Veterinary Journal, 2021, 267, 105579.	0.6	7
5	COMP (Cartilage Oligomeric Matrix Protein) Neoepitope. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1218-1228.	1.1	9
6	Bupivacaine in combination with sildenafil (Viagra) and vitamin D3 have anti-inflammatory effects in osteoarthritic chondrocytes. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100066.	1.7	2
7	Low-grade inflammation causes gap junction-coupled cell dysfunction throughout the body, which can lead to the spread of systemic inflammation. Scandinavian Journal of Pain, 2019, 19, 639-649.	0.5	6
8	Serotonin-evoked cytosolic Ca2+ release and opioid receptor expression are upregulated in articular cartilage chondrocytes from osteoarthritic joints in horses. Veterinary and Animal Science, 2019, 8, 100078.	0.6	5
9	Anti-inflammatory effects induced by ultralow concentrations of bupivacaine in combination with ultralow concentrations of sildenafil (Viagra) and vitamin D3 on inflammatory reactive brain astrocytes. PLoS ONE, 2019, 14, e0223648.	1.1	3
10	Rotavirus and Cystoisospora suis in piglets during the suckling and early post weaning period, in systems with solid floors and age segregated rearing. Porcine Health Management, 2019, 5, 7.	0.9	13
11	Effect of circadian rhythm, age, training and acute lameness on serum concentrations of cartilage oligomeric matrix protein (COMP) neoâ€epitope in horses. Equine Veterinary Journal, 2019, 51, 674-680.	0.9	6
12	Elevated Glucose Levels Preserve Glucose Uptake, Hyaluronan Production, and Low Glutamate Release Following Interleukin-11² Stimulation of Differentiated Chondrocytes. Cartilage, 2019, 10, 491-503.	1.4	15
13	Biochemical alterations in inflammatory reactive chondrocytes: evidence for intercellular network communication. Heliyon, 2018, 4, e00525.	1.4	9
14	Anti-inflammatory effects induced by pharmaceutical substances on inflammatory active brain astrocytes—promising treatment of neuroinflammation. Journal of Neuroinflammation, 2018, 15, 321.	3.1	21
15	Time-dependent changes in gene expression induced in vitro by interleukin-1β in equine articular cartilage. Research in Veterinary Science, 2018, 118, 466-476.	0.9	12
16	Characterisation of lubricin in synovial fluid from horses with osteoarthritis. Equine Veterinary Journal, 2017, 49, 116-123.	0.9	30
17	Inflammatory activation of human cardiac fibroblasts leads to altered calcium signaling, decreased connexin 43 expression and increased glutamate secretion. Heliyon, 2017, 3, e00406.	1.4	12
18	Cartilage oligomeric matrix protein neoepitope in the synovial fluid of horses with acute lameness: A new biomarker for the early stages of osteoarthritis. Equine Veterinary Journal, 2017, 49, 662-667.	0.9	29

Eva S R Skiöldebrand

#	Article	IF	CITATIONS
19	Therapeutic innovation: Inflammatory-reactive astrocytes as targets of inflammation. IBRO Reports, 2016, 1, 1-9.	0.3	17
20	Coupled cell networks of astrocytes and chondrocytes are target cells of inflammation. Scandinavian Journal of Pain, 2016, 12, 120-121.	0.5	1
21	Coupled cell networks are target cells of inflammation, which can spread between different body organs and develop into systemic chronic inflammation. Journal of Inflammation, 2015, 12, 44.	1.5	29
22	An inflammatory equine model demonstrates dynamic changes of immune response and cartilage matrix molecule degradationin vitro. Connective Tissue Research, 2015, 56, 315-325.	1.1	23
23	Indications of that migration of stem cells is influenced by the extra cellular matrix architecture in the mammalian intervertebral disk region. Tissue and Cell, 2015, 47, 439-455.	1.0	9
24	Effects of interleukin-6 and interleukin-1β on expression of growth differentiation factor-5 and Wnt signaling pathway genes in equine chondrocytes. American Journal of Veterinary Research, 2014, 75, 132-140.	0.3	10
25	Cell and matrix modulation in prenatal and postnatal equine growth cartilage, zones of Ranvier and articular cartilage. Journal of Anatomy, 2014, 225, 548-568.	0.9	9
26	Quantitative proteomics reveals regulatory differences in the chondrocyte secretome from human medial and lateral femoral condyles in osteoarthritic patients. Proteome Science, 2013, 11, 43.	0.7	32
27	Similar cellular migration patterns from niches in intervertebral disc and in knee-joint regions detected by in situ labeling: an experimental study in the New Zealand white rabbit. Stem Cell Research and Therapy, 2013, 4, 104.	2.4	29
28	Support of Concept That Migrating Progenitor Cells From Stem Cell Niches Contribute to Normal Regeneration of the Adult Mammal Intervertebral Disc. Spine, 2012, 37, 722-732.	1.0	88
29	Effects of high mobility group box protein-1, interleukin-1β, and interleukin-6 on cartilage matrix metabolism in three-dimensional equine chondrocyte cultures. Connective Tissue Research, 2011, 52, 290-300.	1.1	26
30	Concentration of collagen, aggrecan and cartilage oligomeric matrix protein (COMP) in synovial fluid from equine middle carpal joints. Equine Veterinary Journal, 2010, 33, 394-402.	0.9	34
31	Ultrastructural immunolocalization of cartilage oligomeric matrix protein (COMP) in the articular cartilage on the equine third carpal bone in trained and untrained horses. Research in Veterinary Science, 2010, 88, 251-257.	0.9	7
32	Altered Homeostasis of Extracellular Matrix Proteins in Joints of Standardbred Trotters During a Long-term Training Programme. Transboundary and Emerging Diseases, 2006, 53, 445-449.	0.6	10
33	Enhanced concentration of COMP (cartilage oligomeric matrix protein) in osteochondral fractures from racing Thoroughbreds. Journal of Orthopaedic Research, 2005, 23, 156-163.	1.2	29
34	EX VIVO MAGNETIC RESONANCE IMAGING OF THE DISTAL ROW OF EQUINE CARPAL BONES: ASSESSMENT OF BONE SCLEROSIS AND CARTILAGE DAMAGE. Veterinary Radiology and Ultrasound, 2003, 44, 501-512.	0.4	37