Arnaud Devos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3148524/publications.pdf

Version: 2024-02-01

28	681	14	23
papers	citations	h-index	g-index
28	28	28	545
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Strong oscillations detected by picosecond ultrasonics in silicon: Evidence for an electronic-structure effect. Physical Review B, 2004, 70, .	3.2	93
2	Hypersound damping in vitreous silica measured by picosecond acoustics. Physical Review B, 2008, 77, .	3.2	74
3	Evidence of Laser-Wavelength Effect in Picosecond Ultrasonics: Possible Connection With Interband Transitions. Physical Review Letters, 2001, 86, 2669-2672.	7.8	67
4	A different way of performing picosecond ultrasonic measurements in thin transparent films based on laser-wavelength effects. Applied Physics Letters, 2005, 86, 211903.	3.3	61
5	Time-resolved vibrations of two-dimensional hypersonic phononic crystals. Physical Review B, 2007, 76, .	3.2	48
6	Acoustic attenuation measurements in transparent materials in the hypersonic range by picosecond ultrasonics. Applied Physics Letters, 2006, 89, 191904.	3.3	42
7	Complete thin film mechanical characterization using picosecond ultrasonics and nanostructured transducers: experimental demonstration on SiO2. Applied Physics Letters, 2008, 93, .	3.3	41
8	Collective acoustic modes in various two-dimensional crystals by ultrafast acoustics: Theory and experiment. Physical Review B, 2008, 78, .	3.2	40
9	Strong effect of interband transitions in the picosecond ultrasonics response of metallic thin films. Physical Review B, 2003, 68, .	3.2	38
10	High-laser-wavelength sensitivity of the picosecond ultrasonic response in transparent thin films. Physical Review B, 2006, 74, .	3.2	36
11	Subterahertz hypersound attenuation in silica glass studied via picosecond acoustics. Physical Review B, 2011, 83, .	3.2	36
12	Strong Generation of Coherent Acoustic Phonons in Semiconductor Quantum Dots. Physical Review Letters, 2007, 98, 207402.	7.8	26
13	Colored ultrafast acoustics: From fundamentals to applications. Ultrasonics, 2015, 56, 90-97.	3.9	25
14	Generation of terahertz acoustic waves in semiconductor quantum dots using femtosecond laser pulses. Physical Review B, 2010, 81, .	3.2	21
15	Non-destructive spatial characterization of buried interfaces in multilayer stacks via two color picosecond acoustics. Applied Physics Letters, 2017, 111, .	3.3	9
16	Pushing the limits of acoustics at the nanoscale using femtosecond transient interferometry. Applied Physics Letters, 2014, 105, .	3.3	5
17	Thin-film adhesion characterization by Colored Picosecond Acoustics. Surface and Coatings Technology, 2018, 352, 406-410.	4.8	5
18	Fano resonance between Stokes and anti-Stokes Brillouin scattering. Physical Review Research, 2021, 3,	3.6	5

#	Article	IF	CITATIONS
19	Ultrafast acoustics in the middle UV range: coherent phonons at higher frequencies and in smaller objects. Optics Letters, 2010, 35, 3510.	3.3	4
20	4F-5 An Improvement of the Picosecond Ultrasonic Technique Based on a Tunable Laser: Application to Bulk Acoustic Wave Resonator Characterizations. , 2006 , , .		1
21	Hypersound Damping in Vitreous Silica Measured by Ultrafast Acoustics. International Journal of Thermophysics, 2013, 34, 1785-1794.	2.1	1
22	Ultrafast optical technique for measuring the electrical dependence of the elasticity of piezoelectric thin film: Demonstration on AlN. Review of Scientific Instruments, 2013, 84, 015007.	1.3	1
23	Ultrafast strain waves reconstruction from coherent acoustic phonons reflection. Applied Physics Letters, 2021, 119, .	3.3	1
24	Thin-film adhesion: A comparative study between colored picosecond acoustics and spontaneous buckles analysis. Surface and Coatings Technology, 2021, 421, 127485.	4.8	1
25	Strong picosecond ultrasonic responses of semiconductors probed close to interband transitions. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2741-2744.	0.8	O
26	Picosecond ultrasonic investigations of phonons in 2D nano-scaled lattices. Journal of Physics: Conference Series, 2007, 92, 012027.	0.4	0
27	Blistering of Al2O3/a-SiNx:H stacks: analysis of the submerged part of the iceberg by colored picosecond acoustic microscopy. , 2017, , .		0
28	Ferroelastic relaxation at 20 GHz evidenced by large frequency range picosecond acoustics. Applied Physics Letters, 2018, 112, 262905.	3.3	0