
Matt J Aitkenhead

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3148281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Factors influencing winegrowers' adoption of soil organic carbon sequestration practices in France. Environmental Science and Policy, 2022, 128, 45-55.	4.9	5
2	Soil organic carbon sequestration rates in vineyard agroecosystems under different soil management practices: A meta-analysis. Journal of Cleaner Production, 2021, 290, 125736.	9.3	38
3	Predicting the abatement rates of soil organic carbon sequestration management in Western European vineyards using random forest regression. Cleaner Environmental Systems, 2021, 2, 100024.	4.2	8
4	Climate change and soil organic matter in Scotland: time to turn over a new leaf?. Soil Research, 2021, 59, 529.	1.1	1
5	Adapting scenarios for climate adaptation: Practitioners' perspectives on a popular planning method. Environmental Science and Policy, 2020, 104, 13-19.	4.9	32
6	Mapping soil profile depth, bulk density and carbon stock in Scotland using remote sensing and spatial covariates. European Journal of Soil Science, 2020, 71, 553-567.	3.9	25
7	Optimization of spectral preâ€processing for estimating soil condition on small farms. Soil Use and Management, 2020, , .	4.9	3
8	Estimating soil properties from smartphone imagery in Ethiopia. Computers and Electronics in Agriculture, 2020, 171, 105322.	7.7	11
9	Neural Network Analysis to Evaluate Ozone Damage to Vegetation Under Different Climatic Conditions. Frontiers in Forests and Global Change, 2020, 3, .	2.3	6
10	Low-cost hyper-spectral imaging system using a linear variable bandpass filter for agritech applications. Applied Optics, 2020, 59, A167.	1.8	14
11	Detection and differentiation between potato (Solanum tuberosum) diseases using calibration models trained with non-imaging spectrometry data. Computers and Electronics in Agriculture, 2019, 167, 105056.	7.7	21
12	Potential carbon loss from Scottish peatlands under climate change. Regional Environmental Change, 2019, 19, 2101-2111.	2.9	17
13	Digital mapping of soil ecosystem services in Scotland using neural networks and relationship modelling—Part 1: Mapping of soil classes. Soil Use and Management, 2019, 35, 205-216.	4.9	7
14	Digital mapping of soil ecosystem services in Scotland using neural networks and relationship modelling. Part 2: Mapping of soil ecosystem services. Soil Use and Management, 2019, 35, 217-231.	4.9	5
15	Exploring the Impact of Different Input Data Types on Soil Variable Estimation Using the ICRAF-ISRIC Global Soil Spectral Database. Applied Spectroscopy, 2018, 72, 188-198.	2.2	4
16	Digital RGB photography and visible-range spectroscopy for soil composition analysis. Geoderma, 2018, 313, 265-275.	5.1	34
17	Use of Imaging Technologies for High Throughput Phenotyping. , 2018, , 145-158.		5
18	Mapping peat in Scotland with remote sensing and site characteristics. European Journal of Soil Science, 2017, 68, 28-38.	3.9	22

2

MATT J AITKENHEAD

#	Article	IF	CITATIONS
19	PHYLIS: A Low-Cost Portable Visible Range Spectrometer for Soil and Plants. Sensors, 2017, 17, 99.	3.8	11
20	A method for automatic segmentation and splitting of hyperspectral images of raspberry plants collected in field conditions. Plant Methods, 2017, 13, 74.	4.3	30
21	Automated Soil Physical Parameter Assessment Using Smartphone and Digital Camera Imagery. Journal of Imaging, 2016, 2, 35.	3.0	19
22	Estimating Soil Properties with a Mobile Phone. Progress in Soil Science, 2016, , 89-110.	0.8	11
23	Mapping soil carbon stocks across Scotland using a neural network model. Geoderma, 2016, 262, 187-198.	5.1	56
24	Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring. Advances in Agronomy, 2015, , 139-159.	5.2	288
25	Predicting Scottish topsoil organic matter content from colour and environmental factors. European Journal of Soil Science, 2015, 66, 112-120.	3.9	23
26	Innovations in Environmental Monitoring Using Mobile Phone Technology – A Review. International Journal of Interactive Mobile Technologies, 2014, 8, 42.	1.2	15
27	The physical environment and health-enhancing activity during the school commute: global positioning system, geographical information systems and accelerometry. Geospatial Health, 2014, 8, 569.	0.8	10
28	Predicting Sample Source Location from Soil Analysis Using Neural Networks. Environmental Forensics, 2014, 15, 281-292.	2.6	11
29	The effect of image compression on synthetic PROBA-V images. International Journal of Remote Sensing, 2014, 35, 2639-2653.	2.9	6
30	SPOT-VEGETATION – 15 years of success: what's next?. International Journal of Remote Sensing, 2014, 35, 2397-2401.	2.9	2
31	Neural network integration of field observations for soil endocrine disruptor characterisation. Science of the Total Environment, 2014, 468-469, 240-248.	8.0	4
32	Gypsophile Chemistry Unveiled: Fourier Transform Infrared (FTIR) Spectroscopy Provides New Insight into Plant Adaptations to Gypsum Soils. PLoS ONE, 2014, 9, e107285.	2.5	65
33	Prediction of soil characteristics and colour using data from the National Soils Inventory of Scotland. Geoderma, 2013, 200-201, 99-107.	5.1	61
34	E-SMART: Environmental Sensing for Monitoring and Advising in Real-Time. IFIP Advances in Information and Communication Technology, 2013, , 129-142.	0.7	16
35	Use of artificial neural networks in measuring characteristics of shielded plutonium for arms control. Journal of Analytical Atomic Spectrometry, 2012, 27, 432.	3.0	12
36	Predicting soil chemical composition and other soil parameters from field observations using a neural network. Computers and Electronics in Agriculture, 2012, 82, 108-116.	7.7	21

#	Article	IF	CITATIONS
37	Development and testing of a process-based model (MOSES) for simulating soil processes, functions and ecosystem services. Ecological Modelling, 2011, 222, 3795-3810.	2.5	11
38	Sustainable local land use policy: rhetoric and reality. Local Environment, 2008, 13, 291-308.	2.4	4