
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3147733/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography. Biomedical Optics Express, 2014, 5, 1980.	2.9	94
2	Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography. Journal of Biomedical Optics, 2008, 13, 060506.	2.6	93
3	Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT. Optics Letters, 2009, 34, 986.	3.3	92
4	A Membrane Associated mCherry Fluorescent Reporter Line for Studying Vascular Remodeling and Cardiac Function During Murine Embryonic Development. Anatomical Record, 2009, 292, 333-341.	1.4	72
5	Optical coherence tomography for high-resolution imaging of mouse development in utero. Journal of Biomedical Optics, 2011, 16, 046004.	2.6	60
6	Direct four-dimensional structural and functional imaging of cardiovascular dynamics in mouse embryos with 15  MHz optical coherence tomography. Optics Letters, 2015, 40, 4791.	3.3	57
7	Sequential Turning Acquisition and Reconstruction (STAR) method for four-dimensional imaging of cyclically moving structures. Biomedical Optics Express, 2012, 3, 650.	2.9	53
8	Vascular development and hemodynamic force in the mouse yolk sac. Frontiers in Physiology, 2014, 5, 308.	2.8	53
9	LIVE IMAGING OF EARLY DEVELOPMENTAL PROCESSES IN MAMMALIAN EMBRYOS WITH OPTICAL COHERENCE TOMOGRAPHY. Journal of Innovative Optical Health Sciences, 2009, 02, 253-259.	1.0	46
10	Improved Angiogenesis in Response to Localized Delivery of Macrophage-Recruiting Molecules. PLoS ONE, 2015, 10, e0131643.	2.5	43
11	Optical Coherence Tomography for live imaging of mammalian development. Current Opinion in Genetics and Development, 2011, 21, 579-584.	3.3	42
12	In vivo micro-scale tomography of ciliary behavior in the mammalian oviduct. Scientific Reports, 2015, 5, 13216.	3.3	41
13	4D Reconstruction of the Beating Embryonic Heart From Two Orthogonal Sets of Parallel Optical Coherence Tomography Slice-Sequences. IEEE Transactions on Medical Imaging, 2013, 32, 578-588.	8.9	40
14	SMAD Signaling Is Required for Structural Integrity of the Female Reproductive Tract and Uterine Function During Early Pregnancy in Mice. Biology of Reproduction, 2016, 95, 44-44.	2.7	40
15	NADPH oxidase mediates microtubule alterations and diaphragm dysfunction in dystrophic mice. ELife, 2018, 7, .	6.0	40
16	Live imaging of rat embryos with Doppler swept-source optical coherence tomography. Journal of Biomedical Optics, 2009, 14, 050506.	2.6	37
17	Multiple-cardiac-cycle noise reduction in dynamic optical coherence tomography of the embryonic heart and vasculature. Optics Letters, 2009, 34, 3704.	3.3	35
18	Live four-dimensional optical coherence tomography reveals embryonic cardiac phenotype in mouse mutant. Journal of Biomedical Optics, 2015, 20, 1.	2.6	35

#	Article	IF	CITATIONS
19	<i>In vivo</i> three-dimensional tracking of sperm behaviors in the mouse oviduct. Development (Cambridge), 2018, 145, .	2.5	30
20	High-resolution three-dimensional in vivo imaging of mouse oviduct using optical coherence tomography. Biomedical Optics Express, 2015, 6, 2713.	2.9	29
21	Biomechanical assessment of myocardial infarction using optical coherence elastography. Biomedical Optics Express, 2018, 9, 728.	2.9	29
22	Label-free optical imaging in developmental biology [Invited]. Biomedical Optics Express, 2020, 11, 2017.	2.9	29
23	Optical coherence tomography for live phenotypic analysis of embryonic ocular structures in mouse models. Journal of Biomedical Optics, 2012, 17, 081410.	2.6	28
24	Characterization of bacterial artificial chromosome transgenic mice expressing mCherry fluorescent protein substituted for the murine smooth muscle αâ€actin gene. Genesis, 2010, 48, 457-463.	1.6	27
25	Dynamic imaging and quantitative analysis of cranial neural tube closure in the mouse embryo using optical coherence tomography. Biomedical Optics Express, 2017, 8, 407.	2.9	27
26	Fourâ€dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography. Journal of Biophotonics, 2016, 9, 837-847.	2.3	23
27	Applicability, usability, and limitations of murine embryonic imaging with optical coherence tomography and optical projection tomography. Biomedical Optics Express, 2016, 7, 2295.	2.9	23
28	Increasing the field-of-view of dynamic cardiac OCT via post-acquisition mosaicing without affecting frame-rate or spatial resolution. Biomedical Optics Express, 2011, 2, 2614.	2.9	21
29	Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research. Journal of Biomedical Optics, 2015, 20, 1.	2.6	20
30	Rotational imaging optical coherence tomography for full-body mouse embryonic imaging. Journal of Biomedical Optics, 2016, 21, 1.	2.6	19
31	InÂvivo dynamic 3D imaging of oocytes and embryos in the mouse oviduct. Cell Reports, 2021, 36, 109382.	6.4	19
32	Speckle variance optical coherence tomography of blood flow in the beating mouse embryonic heart. Journal of Biophotonics, 2017, 10, 735-743.	2.3	18
33	Imaging Mouse Embryonic Cardiovascular Development. Cold Spring Harbor Protocols, 2012, 2012, pdb.top071498.	0.3	17
34	Comparison and combination of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study. Biomedical Optics Express, 2017, 8, 4629.	2.9	16
35	Live imaging of developing mouse retinal slices. Neural Development, 2018, 13, 23.	2.4	15
36	Prolonged in vivo functional assessment of the mouse oviduct using optical coherence tomography through a dorsal imaging window. Journal of Biophotonics, 2018, 11, e201700316.	2.3	14

#	Article	IF	CITATIONS
37	Algorithms for improved 3-D reconstruction of live mammalian embryo vasculature from optical coherence tomography data. Quantitative Imaging in Medicine and Surgery, 2015, 5, 125-35.	2.0	13
38	Live Confocal Microscopy of the Developing Mouse Embryonic Yolk Sac Vasculature. Methods in Molecular Biology, 2015, 1214, 163-172.	0.9	11
39	In Vivo Imaging of the Mouse Reproductive Organs, Embryo Transfer, and Oviduct Cilia Dynamics Using Optical Coherence Tomography. Methods in Molecular Biology, 2018, 1752, 53-62.	0.9	10
40	Staging mouse preimplantation development in vivo using optical coherence microscopy. Journal of Biophotonics, 2019, 12, e201800364.	2.3	9
41	Embryonic Mouse Cardiodynamic OCT Imaging. Journal of Cardiovascular Development and Disease, 2020, 7, 42.	1.6	9
42	Imaging of Cardiovascular Development in Mammalian Embryos Using Optical Coherence Tomography. Methods in Molecular Biology, 2015, 1214, 151-161.	0.9	9
43	Live mechanistic assessment of localized cardiac pumping in mammalian tubular embryonic heart. Journal of Biomedical Optics, 2020, 25, 1.	2.6	9
44	Ultra-fast dynamic line-field optical coherence elastography. Optics Letters, 2021, 46, 4742.	3.3	8
45	Second harmonic generation microscopy of early embryonic mouse hearts. Biomedical Optics Express, 2019, 10, 2898.	2.9	8
46	Dynamic Imaging of Mouse Embryos and Cardiac Development in Static Culture. Methods in Molecular Biology, 2021, 2206, 129-141.	0.9	4
47	Optogenetic cardiac pacing in cultured mouse embryos under imaging guidance. Journal of Biophotonics, 2020, 13, e202000223.	2.3	3
48	Dynamic volumetric imaging and cilia beat mapping in the mouse male reproductive tract with optical coherence tomography. Biomedical Optics Express, 2022, 13, 3672.	2.9	3
49	In Vivo Imaging of the Developing Mouse Embryonic Vasculature. Methods in Molecular Biology, 2012, 872, 205-215.	0.9	2
50	Comparison of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study. Proceedings of SPIE, 2016, , .	0.8	2
51	Development of optical sensor for soft tissue sarcoma boundary detection using optical coherence elastography. , 2014, , .		1
52	Live dynamic analysis of the developing cardiovascular system in mice. Proceedings of SPIE, 2017, , .	0.8	1
53	Dynamic Imaging of Mouse Embryos and Cardiodynamics in Static Culture. Methods in Molecular Biology, 2018, 1752, 41-52.	0.9	1
54	2021 JOSA A Emerging Researcher Best Paper Prize: editorial. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 0, , .	1.5	1

#	Article	IF	CITATIONS
55	Studying mammalian development with optical coherence tomography. , 2011, , .		0
56	Mouse embryo manipulations with OCT guidance. Proceedings of SPIE, 2014, , .	0.8	0
57	Back Cover: Fourâ€dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography (J. Biophotonics 8/2016). Journal of Biophotonics, 2016, 9, .	2.3	0
58	Live 4D optical coherence tomography for early embryonic mouse cardiac phenotyping. , 2016, , .		0
59	2020 JOSA A Emerging Researcher Best Paper Prize: editorial. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2021, 38, ED2.	1.5	0
60	Functional optical coherence tomography for live dynamic analysis of mouse embryonic cardiogenesis. , 2018, , .		0
61	Tracking spermatozoa movement toward the egg with functional optical coherence tomography. , 2022, , .		0