Demid Kirilenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3147682/publications.pdf

Version: 2024-02-01

200 papers

2,684 citations

201385 27 h-index ²⁶⁴⁸⁹⁴
42
g-index

202 all docs 202 docs citations

times ranked

202

3263 citing authors

#	Article	IF	Citations
1	Cobalt oxide decorated porous silica particles: Structure and activity relationship in the catalytic oxidation of carbon monoxide. Applied Surface Science, 2022, 579, 152121.	3.1	5
2	Single GaP nanowire nonlinear characterization with the aid of an optical trap. Nanoscale, 2022, 14, 993-1000.	2.8	11
3	Biocompatible acid-degradable micro-mesoporous CaCO3:Si:Fe nanoparticles potential for drug delivery. Microporous and Mesoporous Materials, 2022, 333, 111762.	2.2	3
4	A Blueprint for the Synthesis and Characterization of Thiolated Graphene. Nanomaterials, 2022, 12, 45.	1.9	3
5	Molecular beam epitaxy and polarized excitonic emission of layered GaTe/GaAs thin films. Journal of Crystal Growth, 2022, 592, 126716.	0.7	1
6	Guiding graphene derivatization for covalent immobilization of aptamers. Carbon, 2022, 196, 264-279.	5.4	7
7	Nanoscale Gallium Phosphide Epilayers on Sapphire for Low-Loss Visible Nanophotonics. ACS Applied Nano Materials, 2022, 5, 8846-8858.	2.4	7
8	Silicon Nanowire-Based Room-Temperature Multi-environment Ammonia Detection. ACS Applied Nano Materials, 2022, 5, 9940-9949.	2.4	8
9	Polyvinylpyrrolidone as a Stabilizer in Synthesis of AglnS2 Quantum Dots. Nanomaterials, 2022, 12, 2357.	1.9	3
10	Formation of spherical microporous silica particles from organosilane and quat molecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129633.	2.3	2
11	Hole-matrixed carbonylated graphene: Synthesis, properties, and highly-selective ammonia gas sensing. Carbon, 2021, 172, 236-247.	5.4	34
12	Silver melamine thin film as a flexible platform for SERS analysis. Nanoscale, 2021, 13, 7375-7380.	2.8	5
13	MoS ₂ flake as a van der Waals homostructure: luminescence properties and optical anisotropy. Nanoscale, 2021, 13, 17566-17575.	2.8	7
14	Correlation between crystal structure and magnetism in PLD grown epitaxial films of lµ-Fe ₂ O ₃ on GaN. Science and Technology of Advanced Materials, 2021, 22, 85-99.	2.8	11
15	Recrystallization of CsPbBr3 Nanoparticles in Fluoropolymer Nonwoven Mats for Down- and Up-Conversion of Light. Nanomaterials, 2021, 11, 412.	1.9	6
16	Micro-mesoporous submicron silica particles with pore size tunable in a wide range: synthesis, properties and prospects for LED manufacturing. Nanotechnology, 2021, 32, 215604.	1.3	16
17	Deagglomeration of polycrystalline diamond synthesized from graphite by shock-compression. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 779-782.	1.0	1
18	XRD Evaluation of Wurtzite Phase in MBE Grown Self-Catalyzed GaP Nanowires. Nanomaterials, 2021, 11, 960.	1.9	5

#	Article	lF	Citations
19	Molybdenum/tungsten disulfide solid solutions nanoparticles formation by aerosol-assisted CVD. Solid State Sciences, 2021, 115, 106583.	1.5	4
20	Multi-colour light emission from InGaN nanowires monolithically grown on Si substrate by MBE. Nanotechnology, 2021, 32, 335604.	1.3	9
21	A comprehensive study of biocompatibility of detonation nanodiamonds. Journal of Molecular Liquids, 2021, 332, 115763.	2.3	7
22	Rewritable and Tunable Laser-Induced Optical Gratings in Phase-Change Material Films. ACS Applied Materials & Samp; Interfaces, 2021, 13, 32031-32036.	4.0	16
23	Effect of crystal structure on the Young's modulus of GaP nanowires. Nanotechnology, 2021, 32, 385706.	1.3	4
24	Anomalously Large Burgers Vectors of Screw Dislocations in Gallium Nitride Nanowires. Crystallography Reports, 2021, 66, 644-647.	0.1	0
25	Formation of Hexagonal Ge Stripes on the Side Facets of AlGaAs Nanowires: Implications for Near-Infrared Detectors. ACS Applied Nano Materials, 2021, 4, 7289-7294.	2.4	2
26	Tailoring Morphology and Vertical Yield of Self-Catalyzed GaP Nanowires on Template-Free Si Substrates. Nanomaterials, 2021, 11, 1949.	1.9	8
27	Synthesis and magnetic properties of cobalt ferrite nanoparticles formed under hydro and solvothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2021, 12, 492-504.	0.2	2
28	Magnetic Properties of Bacterial Magnetosomes Produced by Magnetospirillum caucaseum SO-1. Microorganisms, 2021, 9, 1854.	1.6	7
29	Modulating nitrogen species via N-doping and post annealing of graphene derivatives: XPS and XAS examination. Carbon, 2021, 182, 593-604.	5.4	66
30	Work function tailoring in gallium phosphide nanowires. Applied Surface Science, 2021, 563, 150018.	3.1	5
31	Mid-IR-Sensitive n/p-Junction Fabricated on p-Type Si Surface via Ultrashort Pulse Laser n-Type Hyperdoping and High-Temperature Annealing. ACS Applied Electronic Materials, 2021, 3, 769-777.	2.0	1
32	Porous Silica Particles Modified in a NH3 + H2O + H2O2 Mixture: Structure, Filling with Cobalt Oxide, and Catalytic Activity for CO Conversion. Inorganic Materials, 2021, 57, 906-912.	0.2	2
33	Small-Angle Neutron Scattering Study of Graphene-Nanodiamond Composites for Biosensor and Electronic Applications. Journal of Surface Investigation, 2021, 15, 896-898.	0.1	1
34	Near-far IR photoconductivity damping in hyperdoped Si at low temperatures. Optical Materials Express, 2021, 11, 3792.	1.6	6
35	Formation of Silicon Nanoclusters in Disproportionation of Silicon Monoxide. Semiconductors, 2021, 55, 423.	0.2	4
36	Synthesis of Monodisperse MoS2 Nanoparticles by the Template Method. Semiconductors, 2021, 55, 525.	0.2	0

3

#	Article	IF	CITATIONS
37	Multiporous Silica Nanoparticles with Carbon Nanodots: Synthesis, Optoelectronic and Biomedical Applications. Physics of the Solid State, 2021, 63, 1704-1710.	0.2	O
38	Thermal decomposition of GaAs nanowires. Nanotechnology, 2020, 31, 055701.	1.3	7
39	Structural and optical characterization of dilute phosphide planar heterostructures with high nitrogen content on silicon. CrystEngComm, 2020, 22, 283-292.	1.3	8
40	Revealing the structure of composite nanodiamond–graphene oxide aqueous dispersions by small-angle scattering. Diamond and Related Materials, 2020, 103, 107670.	1.8	9
41	GaNP-based photovoltaic device integrated on Si substrate. Solar Energy Materials and Solar Cells, 2020, 206, 110282.	3.0	11
42	Laser-Induced Magnetization Precession in Individual Magnetoelastic Domains of a Multiferroic <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Co</mml:mi><mml:mn>40</mml:mn></mml:msub><mml:msub><mml:msub><mml:msub><mml:mn>20</mml:mn></mml:msub><mml:mo>/</mml:mo> mathvariant="normal">O<. Physical Review Applied, 2020, 14, .</mml:msub></mml:msub></mml:math>		
43	Segregated Network Polymer Composites with High Electrical Conductivity and Well Mechanical Properties based on PVC, P(VDF-TFE), UHMWPE, and rGO. ACS Omega, 2020, 5, 25148-25155.	1.6	20
44	Influence of Stabilizing Ion Content on the Structure, Photoluminescence and Biological Properties of Zr1–xEuxO2–0.5x Nanoparticles. Crystals, 2020, 10, 1038.	1.0	4
45	Laser Formation of Colloidal Sulfur- and Carbon-Doped Silicon Nanoparticles. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2020, 128, 897-901.	0.2	2
46	Molecular Beam Epitaxy of Layered Group III Metal Chalcogenides on GaAs(001) Substrates. Materials, 2020, 13, 3447.	1.3	16
47	Structural and Optical Properties of Self-Catalyzed Axially Heterostructured GaPN/GaP Nanowires Embedded into a Flexible Silicone Membrane. Nanomaterials, 2020, 10, 2110.	1.9	20
48	Controllable antiphase domain density in dilute nitride GaPN/GaP heterostructures on silicon. Journal of Physics: Conference Series, 2020, 1461, 012039.	0.3	0
49	Unveiling a facile approach for large-scale synthesis of N-doped graphene with tuned electrical properties. 2D Materials, 2020, 7, 045001.	2.0	31
50	Multifunctional Sulfurâ€Hyperdoped Silicon Nanoparticles with Engineered Midâ€Infrared Sulfurâ€Impurity and Freeâ€Carrier Absorption. Particle and Particle Systems Characterization, 2020, 37, 2000010.	1.2	5
51	Formation of GaN Nanorods in Monodisperse Spherical Mesoporous Silica Particles. Semiconductors, 2020, 54, 782-787.	0.2	0
52	Formation of Anisotropic Hydroxyapatite Particles under Hydrothermal Conditions. Russian Journal of Applied Chemistry, 2020, 93, 633-638.	0.1	1
53	Model experiment on a glass-forming Pd-Ni-Cu-P alloy. European Physical Journal: Special Topics, 2020, 229, 157-165.	1.2	3
54	High performance multiâ€functional cyanate ester oligomerâ€based network and epoxyâ€POSS containing nanocomposites: Structure, dynamics, and properties. Polymer Composites, 2020, 41, 1900-1912.	2.3	17

#	Article	lF	Citations
55	From graphene oxide towards aminated graphene: facile synthesis, its structure and electronic properties. Scientific Reports, 2020, 10, 6902.	1.6	114
56	Fast and Controllable Synthesis of Core–Shell Fe ₃ O ₄ –C Nanoparticles by Aerosol CVD. ACS Omega, 2020, 5, 8146-8150.	1.6	11
57	Study of Wurtzite Crystal Phase Stabilization in Heterostructured Ga(As,P) Nanowires. Semiconductors, 2020, 54, 1862-1865.	0.2	1
58	Size-Dependent Bioactivity of Silver Nanoparticles: Antibacterial Properties, Influence on Copper Status in Mice, and Whole-Body Turnover. Nanotechnology, Science and Applications, 2020, Volume 13, 137-157.	4.6	33
59	Molecular-Beam Epitaxy of Two-Dimensional GaSe Layers on GaAs(001) and GaAs(112) Substrates: Structural and Optical Properties. Semiconductors, 2019, 53, 1131-1137.	0.2	8
60	Novel approach of controllable stoichiometric fabrication of alloyed Au/Ag nanoparticles by nanosecond laser ablation of thin bi-layered films in water. Laser Physics Letters, 2019, 16, 096002.	0.6	12
61	Template Synthesis of Monodisperse Submicrometer Spherical Nanoporous Silicon Particles. Semiconductors, 2019, 53, 1048-1053.	0.2	2
62	Fluorescence enhancement of monodisperse carbon nanodots treated with aqueous ammonia and hydrogen peroxide. Nanotechnology, 2019, 30, 475601.	1.3	6
63	Super-Heat Resistant Polymer Nanocomposites Based on Heterocyclic Networks: Structure and Properties. Physics of the Solid State, 2019, 61, 1494-1501.	0.2	5
64	A New Hybrid Material: Monolithic Biomorphic Carbon/Nickel Nanoparticles for Energy Storage Devices. Technical Physics Letters, 2019, 45, 809-813.	0.2	1
65	Localization and transient emission properties in InGaN/GaN quantum wells of different polarities within core–shell nanorods. Nanoscale, 2019, 11, 193-199.	2.8	10
66	High temperature phthalonitrile nanocomposites with silicon based nanoparticles of different nature and surface modification: Structure, dynamics, properties. Polymer, 2019, 165, 39-54.	1.8	18
67	Control of Conductivity of In _{<i>x</i>} Ga _{1â€"<i>x</i>} As Nanowires by Applied Tension and Surface States. Nano Letters, 2019, 19, 4463-4469.	4.5	14
68	Effective Suppression of Antiphase Domains in GaP(N)/GaP Heterostructures on Si(001). Crystal Growth and Design, 2019, 19, 4510-4520.	1.4	14
69	Formation of Highly Conducting Optically Transparent Films with Multigraphene Structure via Carbonization of Polyimide Langmuir–Blodgett Films. Technical Physics Letters, 2019, 45, 471-474.	0.2	0
70	High-temperature hybrid phthalonitrile/amino-MMT nanocomposites: Synthesis, structure, properties. EXPRESS Polymer Letters, 2019, 13, 656-672.	1,1	13
71	Light-Emitting Field-Effect Transistors Based on Composite Films of Polyfluorene and CsPbBr3 Nanocrystals. Physics of the Solid State, 2019, 61, 256-262.	0.2	18
72	Narrow Excitonic Lines in Core–Shell Nanorods With InGaN/GaN Quantum Wells Intersected by Basal Stacking Faults. Physica Status Solidi (B): Basic Research, 2019, 256, 1800648.	0.7	2

#	Article	IF	CITATIONS
73	Fabrication of doxorubicin-loaded monodisperse spherical micro-mesoporous silicon particles for enhanced inhibition of cancer cell proliferation. Microporous and Mesoporous Materials, 2019, 281, 1-8.	2.2	7
74	Study of GaAs oxidation in the low-current Townsend discharge. Journal of Physics: Conference Series, 2019, 1400, 055042.	0.3	0
75	Formation of AgInS2/ZnS Colloidal Nanocrystals and Their Photoluminescence Properties. Physics of the Solid State, 2019, 61, 2325-2328.	0.2	4
76	Soluble and insoluble polymer-inorganic systems based on poly(methyl methacrylate), modified with ZrO2-LnO1.5 (Ln = Eu, Tb) nanoparticles: Comparison of their photoluminescence. Journal of Luminescence, 2019, 207, 157-168.	1.5	6
77	Structural and Optical Properties of GaSe/GaAs(001) Layers Grown by Molecular Beam Epitaxy. Acta Physica Polonica A, 2019, 136, 608-612.	0.2	4
78	Phosphors with different morphology, formed under hydrothermal conditions on the basis of ZrO2:Eu3+ nanocrystallites. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10, 654-665.	0.2	2
79	Structure and photoluminescent properties of TiO2:Eu3+ nanoparticles synthesized under hydro and solvothermal conditions from different precursors. Nanosystems: Physics, Chemistry, Mathematics, 2019, , 361-373.	0.2	4
80	The Features of GaAs Nanowire SEM Images. Semiconductors, 2018, 52, 605-608.	0.2	0
81	Oxygen Nitrogen Mixture Effect on Aluminum Nitride Synthesis by Reactive Ion Plasma Deposition. Semiconductors, 2018, 52, 184-188.	0.2	7
82	Strain relaxation in convex-graded InxAl1-xAs (x = $0.05a \in 0.79$) metamorphic buffer layers grown by molecular beam epitaxy on GaAs(001). Superlattices and Microstructures, 2018, 113, 777-784.	1.4	7
83	Exciton Bound to 1D Intersection of Stacking Fault Plane with a ZnSe Quantum Well. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1700410.	1.2	12
84	InAs/AlGaAs quantum dots for single-photon emission in a red spectral range. Scientific Reports, 2018, 8, 5299.	1.6	27
85	Nanostructure, dynamics, and mechanical properties of nanocomposites based on polyurethaneâ€poly (2â€hydroxyethyl methacrylate) semiâ€interpenetrating polymer network with ultraâ€low <scp>MWCNT</scp> contents. Polymer Composites, 2018, 39, 263-273.	2.3	8
86	Tailoring the size and microporosity of $St\tilde{A}\P$ ber silica particles. Microporous and Mesoporous Materials, 2018, 258, 205-210.	2.2	32
87	Milligram-per-second femtosecond laser production of Se nanoparticle inks and ink-jet printing of nanophotonic 2D-patterns. Applied Surface Science, 2018, 436, 662-669.	3.1	28
88	New method for MBE growth of GaAs nanowires on silicon using colloidal Au nanoparticles. Nanotechnology, 2018, 29, 045602.	1.3	6
89	Ultracentrifugation for ultrafine nanodiamond fractionation. Superlattices and Microstructures, 2018, 113, 204-212.	1.4	15
90	Influence of charge carriers on corrugation of suspended graphene. Solid State Communications, 2018, 270, 1-5.	0.9	0

#	Article	IF	Citations
91	MBE growth and properties of GaAs, AlGaAs and InAs nanowires on SiC/Si(111) hybrid substrate. Journal of Physics: Conference Series, 2018, 1135, 012036.	0.3	O
92	Preparation of Transparent N-Zno:Al / P-Cualcro2 Heterojunction Diodeby Sol-Gel Technology. Reviews on Advanced Materials Science, 2018, 57, 167-174.	1.4	3
93	Self-Catalyzed MBE-Grown GaP Nanowires on Si(111): V/III Ratio Effects on the Morphology and Crystal Phase Switching. Semiconductors, 2018, 52, 2092-2095.	0.2	17
94	Atomic Force Microscopy Study of Monodisperse Carbon Nanoparticles. Semiconductors, 2018, 52, 2065-2067.	0.2	2
95	Transformation of the defect structure of InGaAs and InAlAs metamorphic buffer layers depending on indium concentration. Journal of Physics: Conference Series, 2018, 1124, 022027.	0.3	0
96	MBE growth of GaAs nanowires with modulated crystal structure. Journal of Physics: Conference Series, 2018, 1124, 022043.	0.3	1
97	CuO nanowhiskers: Preparation, structure features, properties, and applications. Materials Science and Technology, 2018, 34, 2126-2135.	0.8	10
98	MBE Growth and Structural Properties of GaP and InP Nanowires on a SiC Substrate with a Graphene Layer. Semiconductors, 2018, 52, 1428-1431.	0.2	2
99	Phosphorus-Based Nanowires Grown by Molecular-Beam Epitaxy on Silicon. Semiconductors, 2018, 52, 1416-1419.	0.2	2
100	Single-Photon Emitter at 80 K Based on a Dielectric Nanoantenna with a CdSe/ZnSe Quantum Dot. JETP Letters, 2018, 108, 201-204.	0.4	5
101	Multiwall MoS2 tubes as optical resonators. Applied Physics Letters, 2018, 113, .	1.5	30
102	Facile reduction of graphene oxide suspensions and films using glass wafers. Scientific Reports, 2018, 8, 14154.	1.6	110
103	Structure of Fe–Nb–Cu–Si–B Nanocrystalline Alloy Strip Produced by Melt Spinning. Steel in Translation, 2018, 48, 284-288.	0.1	0
104	Effective Method for Obtaining the Hydrosols of Detonation Nanodiamond with Particle Size < 4 nm. Materials, 2018, 11, 1285.	1.3	8
105	Blue shift of the plasmon resonance in fluoride photo-thermo-refractive glass. Optical Materials Express, 2018, 8, 2734.	1.6	5
106	Unified mechanism of the surface Fermi level pinning in III-As nanowires. Nanotechnology, 2018, 29, 314003.	1.3	26
107	Large-Scale Laser Fabrication of Antifouling Silicon-Surface Nanosheet Arrays via Nanoplasmonic Ablative Self-Organization in Liquid CS ₂ Tracked by a Sulfur Dopant. ACS Applied Nano Materials, 2018, 1, 2461-2468.	2.4	36
108	Epitaxial GaN nanotripods: morphology and crystal structure. Journal of Physics: Conference Series, 2018, 1038, 012053.	0.3	1

#	Article	IF	CITATIONS
109	Droplet epitaxy mediated growth of GaN nanostructures on Si (111) <i>via</i> plasma-assisted molecular beam epitaxy. CrystEngComm, 2018, 20, 3370-3380.	1.3	29
110	Insight into the performance of multi-color InGaN/GaN nanorod light emitting diodes. Scientific Reports, 2018, 8, 7311.	1.6	51
111	Site-Controlled Growth of GaN Nanorods with Inserted InGaN Quantum Wells on $\hat{1}^1$ /4-Cone Patterned Sapphire Substrates by Plasma-Assisted MBE. Semiconductors, 2018, 52, 667-670.	0.2	1
112	Unveiling structural, chemical and magnetic interfacial peculiarities in $\hat{l}\mu$ -Fe2O3/GaN (0001) epitaxial films. Scientific Reports, 2018, 8, 8741.	1.6	16
113	Controllable spherical aggregation of monodisperse carbon nanodots. Nanoscale, 2018, 10, 13223-13235. Tunable polymorphism of epitaxial iron oxides in the four-in-one ferroic-on-GaN system with	2.8	32
114	magnetically ordered \hat{l}_{\pm} , \hat{l}_{3} , <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>É></mml:mi><mml:mo>â^'O<mml:mn>3</mml:mn></mml:mo></mml:mrow></mml:math> , and <mml:math< td=""><td>o}<mml:r< td=""><td>nsub><mml:r< td=""></mml:r<></td></mml:r<></td></mml:math<>	o} <mml:r< td=""><td>nsub><mml:r< td=""></mml:r<></td></mml:r<>	nsub> <mml:r< td=""></mml:r<>
115	mins:mml="http://www.w3.org/1998/Math/MathM!">< mml:mrow>< mml:ms:ub>< mml:mi> Fe < mml:mi> synthesized under hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2018, , 378-388.	n>30.2	:mn>7
116	Large-scale Plasmon-mediated Laser Fabrication of Novel Multi-functional Black-silicon 2D-nanosheet Arrays. , 2018, , .		1
117	STRUCTURE FEATURES OF THE Fe –Cu–Nb–Si–B BASED NANOCRYSTALLINE ALLOY RIBBON PRODUCED THE MELT SPINNING METHOD. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2018, 61, 393-398.	BY 0.1	0
118	Nanoscale visualization of electronic properties of AlxGa1-xN/AlyGa1-yN multiple quantum-well heterostructure by spreading resistance microscopy. Journal of Applied Physics, 2017, 121, 014305.	1,1	4
119	Observing visible-range photoluminescence in GaAs nanowires modified by laser irradiation. Journal of Applied Physics, 2017, 121, .	1.1	14
120	Oriented-attachment growth of diamond single crystal from detonation nanodiamonds. Diamond and Related Materials, 2017, 75, 85-90.	1.8	13
121	Correlated topographic and structural modification on Si surface during multi-shot femtosecond laser exposures: Si nanopolymorphs as potential local structural nanomarkers. Applied Surface Science, 2017, 416, 988-995.	3.1	12
122	Selective area growth of N-polar GaN nanorods by plasma-assisted MBE on micro-cone-patterned c-sapphire substrates. Journal of Crystal Growth, 2017, 477, 207-211.	0.7	6
123	Nucleation of silica Stöber particles in the presence of methacryloxypropyltrimethoxysilane. Colloid Journal, 2017, 79, 56-60.	0.5	3
124	Formation of crystalline heteroepitaxial SiC films on Si by carbonization of polyimide Langmuir–Blodgett films. Japanese Journal of Applied Physics, 2017, 56, 06GH08.	0.8	2
125	Monodisperse core–shell particles composed of magnetite and dye-functionalized mesoporous silica. Technical Physics Letters, 2017, 43, 716-719.	0.2	2
126	Lowâ€Temperature Atmospheric Pressure Plasmaâ€Enhanced CVD of Nanocomposite Coatings "Molybdenum Disulfide (Filler)–Silicon Oxide (Matrix)― Advanced Materials Interfaces, 2017, 4, 1700241.	1.9	14

#	Article	IF	Citations
127	Rehybridization of carbon on facets of detonation diamond nanocrystals and forming hydrosols of individual particles. Carbon, 2017, 122, 737-745.	5.4	72
128	Study of the parameters of nanoscale layers in nanoheterostructures based on II–VI semiconductor compounds. Semiconductors, 2017, 51, 54-60.	0.2	2
129	Heteroepitaxial growth of SiC films by carbonization of polyimide Langmuir-Blodgett films on Si. MATEC Web of Conferences, 2017, 98, 04002.	0.1	0
130	Effect of Ga seeding layer on formation of epitaxial Y-shaped GaN nanoparticles on silicon. Journal of Physics: Conference Series, 2017, 917, 032040.	0.3	1
131	The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1), Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo. Biomolecules, 2017, 7, 78.	1.8	6
132	TEM Investigation of Nanostructures with a High Aspect Ratio. Springer Proceedings in Physics, 2017, , 143-148.	0.1	0
133	New silver nanoparticles induce apoptosis-like process in E. coli and interfere with mammalian copper metabolism. International Journal of Nanomedicine, 2016, Volume 11, 6561-6574.	3.3	20
134	Nanoscale Perforation of Graphene Oxide during Photoreduction Process in the Argon Atmosphere. Journal of Physical Chemistry C, 2016, 120, 28261-28269.	1.5	85
135	Template synthesis of monodisperse carbon nanodots. Physics of the Solid State, 2016, 58, 2545-2549.	0.2	31
136	Features of AlN film grown by ion-plasma sputtering. Journal of Physics: Conference Series, 2016, 741, 012041.	0.3	0
137	Control over structural-dimensional characteristics of tungsten disulfide particles in aerosol-assisted chemical vapor deposition. Russian Journal of Applied Chemistry, 2016, 89, 1948-1954.	0.1	4
138	Measuring the height-to-height correlation function of corrugation in suspended graphene. Ultramicroscopy, 2016, 165, 1-7.	0.8	4
139	TEM study of defect structure of GaN epitaxial films grown on GaN/Al2O3 substrates with buried column pattern. Journal of Crystal Growth, 2016, 445, 30-36.	0.7	5
140	Structural and luminescent properties of Gd oxide doped with Eu3+ embedded in mesopores of SiO2 particles. Journal of Alloys and Compounds, 2016, 678, 434-438.	2.8	15
141	Reduction of the graphene oxide films by soft UV irradiation. , 2016, , .		0
142	Peculiarities of strain relaxation in linearly graded InxGa1â^'xAs/GaAs(001) metamorphic buffer layers grown by molecular beam epitaxy. Journal of Crystal Growth, 2016, 455, 83-89.	0.7	12
143	Optical properties of metal nanoparticles in chrysotile channels. Technical Physics Letters, 2016, 42, 656-658.	0.2	3
144	Dynamics and properties of high performance amorphous Cyanate Ester-based subnanocomposites with ultralow silica content and quasi-regular structure. Polymer, 2016, 103, 36-40.	1.8	11

#	Article	IF	CITATIONS
145	Chloride epitaxy of Î ² -Ga2O3 layers grown on c-sapphire substrates. Semiconductors, 2016, 50, 980-983.	0.2	5
146	Silica subnanometer-sized nodes, nanoclusters and aggregates in Cyanate Ester Resin-based networks: Structure and properties of hybrid subnano- and nanocomposites. European Polymer Journal, 2016, 85, 375-389.	2.6	13
147	Incorporating silica into cyanate ester-based network by sol-gel method: Structure and properties of subnano- and nanocomposites. AIP Conference Proceedings, 2016, , .	0.3	6
148	Complex use of the diffraction techniques in depth profiling of the crystal lattice parameter and composition of InGaAs/GaAs gradient layers. Technical Physics Letters, 2016, 42, 464-467.	0.2	6
149	High-surface area spherical micro-mesoporous silica particles. Microporous and Mesoporous Materials, 2016, 223, 225-229.	2.2	45
150	Properties of AlN films deposited by reactive ion-plasma sputtering. Semiconductors, 2015, 49, 1383-1387.	0.2	11
151	TEM investigation of semipolar GaN layers grown on Si(001) offcut substrates. Semiconductor Science and Technology, 2015, 30, 114002.	1.0	8
152	SiPM prototype for direct VUV registration. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 787, 348-352.	0.7	6
153	The impact of ultra-low amounts of introduced reactive POSS nanoparticles on structure, dynamics and properties of densely cross-linked cyanate ester resins. European Polymer Journal, 2015, 67, 128-142.	2.6	27
154	Core–shell monodisperse spherical mSiO2/Gd2O3:Eu3+@mSiO2 particles as potential multifunctional theranostic agents. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	26
155	Large-area crystalline GaN slabs. Technical Physics Letters, 2015, 41, 246-248.	0.2	6
156	The impact of ultra-low amounts of amino-modified MMT on dynamics and properties of densely cross-linked cyanate ester resins. Nanoscale Research Letters, 2015, 10, 165.	3.1	25
157	A study of fullerene-quantum dot composite structure on substrates with a transparent electrode layer. Technical Physics Letters, 2015, 41, 172-174.	0.2	0
158	One-step synthesis of a suspended ultrathin graphene oxide film: Application in transmission electron microscopy. Micron, 2015, 68, 23-26.	1,1	20
159	Multiperiod quantum-cascade nanoheterostructures: Epitaxy and diagnostics. Semiconductors, 2014, 48, 1600-1604.	0.2	9
160	Analysis of stacking faults in gallium nitride by Fourier transform of high-resolution images. Technical Physics Letters, 2014, 40, 1117-1120.	0.2	3
161	A study of the intermediate layer in 3C–SiC/6H–SiC heterostructures. Journal of Crystal Growth, 2014, 396, 100-103.	0.7	4
162	Photonic crystals and glasses from monodisperse spherical mesoporous silica particles filled with nickel. Physics of the Solid State, 2014, 56, 1033-1038.	0.2	14

#	Article	IF	Citations
163	Electron diffraction measurement of the binding rigidity of free-standing graphene. Technical Physics Letters, 2013, 39, 325-328.	0.2	3
164	Features of the structure and defect states in hydrogenated polymorphous silicon films. JETP Letters, 2013, 97, 466-469.	0.4	8
165	Single-layer graphene oxide films on a silicon surface. Technical Physics, 2013, 58, 1614-1618.	0.2	20
166	Investigation of the transition layer in 3C-SiC/6H-SiC heterostructures. Semiconductors, 2013, 47, 1539-1543.	0.2	3
167	Structure of nanodiamonds prepared by laser synthesis. Physics of the Solid State, 2013, 55, 1747-1753.	0.2	49
168	Monodisperse spherical mesoporous silica particles: fast synthesis procedure and fabrication of photonic-crystal films. Nanotechnology, 2013, 24, 155601.	1.3	74
169	Graphene/silicon carbide-based scaffolds. Journal Physics D: Applied Physics, 2012, 45, 335303.	1.3	4
170	Preparation, structural and optical characterization of nanocrystalline ZnO doped with luminescent Ag-nanoclusters. Optical Materials Express, 2012, 2, 723.	1.6	29
171	Structural-phase transformations at annealing of highly reflective mirrors based on aluminum and silver. Journal of Surface Investigation, 2012, 6, 865-872.	0.1	1
172	First mirrors in ITER: material choice and deposition prevention/cleaning techniques. Nuclear Fusion, 2012, 52, 013017.	1.6	52
173	Luminescence of oxyfluoride glasses co-doped with Ag nanoclusters and Yb ³⁺ ions. RSC Advances, 2012, 2, 1496-1501.	1.7	52
174	Optimizing Er/Yb ratio and content in Er–Yb co-doped glass-ceramics for enhancement of the up- and down-conversion luminescence. Solar Energy Materials and Solar Cells, 2012, 100, 209-215.	3.0	86
175	Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing. Optical Materials, 2012, 34, 616-621.	1.7	31
176	Diagnostic mirrors with transparent protection layer for ITER. Fusion Engineering and Design, 2011, 86, 1341-1344.	1.0	7
177	Quantum cutting in Li (770 nm) and Yb (1000 nm) co-dopant emission bands by energy transfer from the ZnO nano-crystalline host. Optics Express, 2011, 19, 15955.	1.7	26
178	Monolayer graphene from graphite oxide. Diamond and Related Materials, 2011, 20, 105-108.	1.8	66
179	Effect of PbZr0.52Ti0.48O3 thin layer on structure, electronic and magnetic properties of La0.65Sr0.35 MnO3 and La0.65Ca0.30MnO3 thin-films. Journal of Applied Physics, 2011, 109, 113707.	1.1	4
180	Features of molecular-beam epitaxy and structural properties of AlInSb-based heterostructures. Semiconductors, 2011, 45, 1327-1333.	0.2	10

#	Article	IF	CITATIONS
181	Light-assisted nucleation of silver nanowires during polyol synthesis. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 220-223.	2.0	27
182	Measuring the corrugation amplitude of suspended and supported graphene. Physical Review B, 2011, 84, .	1.1	46
183	High reflective mirrors for in-vessel applications in ITER. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 623, 809-811.	0.7	3
184	Graphite structural transformations during intercalation by HNO3 and exfoliation. Carbon, 2010, 48, 1862-1865.	5.4	45
185	Symmetry and electronic states of Mn2+ in ZnS nanowires with mixed hexagonal and cubic stacking. Applied Physics Letters, 2010, 97, 041918.	1.5	6
186	Interface controlled electronic variations in correlated heterostructures. Physical Review B, 2010, 82, .	1.1	9
187	Ultralow blocking temperature and breakdown of the giant spin model in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m< th=""><th>1.1 <mml:mn></mml:mn></th><th>3³/mml:m</th></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	1.1 <mml:mn></mml:mn>	3 ³ /mml:m
188	Preparation and luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters. Optics Express, 2010, 18, 22032.	1.7	98
189	Experimental determination of dead layer thickness for excitons in a wide GaAs/AlGaAs quantum well. Physics of the Solid State, 2009, 51, 1929-1934.	0.2	6
190	TEM study of the structure of gallium nitride epitaxial films grown on substrates with different interface morphologies. Journal of Surface Investigation, 2007, 1, 269-272.	0.1	0
191	Determining the size of coherent nanoinclusions and the crystal lattice misfit parameter using dark-field transmission electron microscopy images. Technical Physics Letters, 2007, 33, 1061-1064.	0.2	1
192	Graphene-on-Porous-Silicon Carbide Structures. Materials Science Forum, 0, 740-742, 133-136.	0.3	0
193	Heteroepitaxial Growth of 3C-SiC on Polar Faces of 6H-SiC Substrates, TEM Investigations. Materials Science Forum, 0, 740-742, 267-270.	0.3	2
194	Low-Temperature Transport Properties of Graphene and Multilayer Graphene on 6H-SiC. Materials Science Forum, 0, 740-742, 137-140.	0.3	3
195	A Study of the Intermediate Layer in 3C-SiC/6H-SiC Heterostructures. Materials Science Forum, 0, 778-780, 247-250.	0.3	O
196	Sonication assisted advanced oxidation process: hybrid method for deagglomeration of detonation nanodiamond particles. Fullerenes Nanotubes and Carbon Nanostructures, 0, , 1-7.	1.0	3
197	Impact of interface recombination on quantum efficiency of aâ€Si:H/câ€Si solar cells based on Si wires. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100339.	0.8	4
198	Formation of Hexagonal Germanium on AlGaAs Nanowire Surfaces by Molecular-Beam Epitaxy. Semiconductors, 0, , 1.	0.2	1

#	Article	IF	CITATIONS
199	Specific Features of Structural Stresses in InGaN/GaN Nanowires. Semiconductors, 0, , 1.	0.2	O
200	Guiding Graphene Derivatization for the On hip Multisensor Arrays: From the Synthesis to the Theoretical Background. Advanced Materials Technologies, 0, , 2101250.	3.0	8