Yves Borensztein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3147466/publications.pdf

Version: 2024-02-01

172457 243625 2,522 115 29 44 citations h-index g-index papers 116 116 116 2147 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Combined surface x-ray diffraction and density functional theory study of the germanene/Al(111)- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mio> structure. Physical Review B, 2022, 106, .</mml:mio></mml:mrow></mml:mrow></mml:math>	row> <mm< td=""><td>l:msqrt><m< td=""></m<></td></mm<>	l:msqrt> <m< td=""></m<>
2	Dichroic Plasmonic Films Based on Anisotropic Au Nanoparticles for Enhanced Sensitivity and Figure of Merit Sensing. Journal of Physical Chemistry C, 2021, 125, 11799-11812.	3.1	1
3	Demonstration of the Existence of Dumbbell Silicene: A Stable Two-Dimensional Allotrope of Silicon. Journal of Physical Chemistry C, 2021, 125, 17906-17917.	3.1	11
4	Resolving the structure of the striped Ge layer on Ag(111):Ag2Ge surface alloy with alternate fcc and hcp domains. Physical Review B, 2021, 104 , .	3.2	7
5	Structure of Germanene/Al(111): A Two-Layer Surface Alloy. Journal of Physical Chemistry C, 2021, 125, 24702-24709.	3.1	8
6	Growth of germanium-silver surface alloys followed by <i>in situ</i> scanning tunneling microscopy: Absence of germanene formation. Physical Review B, 2020, 102, .	3.2	12
7	Gas-induced selective re-orientation of Au–Cu nanoparticles on TiO ₂ (110). Nanoscale, 2019, 11, 752-761.	5. 6	4
8	Structure and stability of silicene on Ag(111) reconstructions from grazing incidence x-ray diffraction and density functional theory. Physical Review B, 2019, 99, .	3.2	14
9	Resolving the Controversial Existence of Silicene and Germanene Nanosheets Grown on Graphite. ACS Nano, 2018, 12, 4754-4760.	14.6	35
10	The mechanism for the stabilization and surfactant properties of epitaxial silicene. Nanoscale, 2018, 10, 2291-2300.	5 . 6	11
11	Ultrasensitive and fast single wavelength plasmonic hydrogen sensing with anisotropic nanostructured Pd films. Sensors and Actuators B: Chemical, 2018, 273, 527-535.	7.8	15
12	Transition from silicene monolayer to thin Si films on Ag(111): comparison between experimental data and Monte Carlo simulation. Beilstein Journal of Nanotechnology, 2018 , 9 , $48-56$.	2.8	3
13	Optical properties of silicene, Si/Ag(111), and Si/Ag(110). Physical Review B, 2018, 97, .	3.2	33
14	Multilayer silicene: clear evidence of Ag-terminated bulk silicon. 2D Materials, 2017, 4, 025067.	4.4	17
15	Mechanism of hydrogen adsorption on gold nanoparticles and charge transfer probed by anisotropic surface plasmon resonance. Physical Chemistry Chemical Physics, 2017, 19, 27397-27405.	2.8	20
16	Formation of silicene on silver: Strong interaction between Ag and Si. Physica Status Solidi (B): Basic Research, 2016, 253, 206-217.	1.5	10
17	Determining the atomic structure of the (<mml:math) (xml="" 0.784314="" 1="" 10="" 112="" 2016.="" 50="" 94<="" b.="" calculations.="" etqq1="" first-principles="" overlock="" physical="" review="" rgbt="" td="" tf="" tj=""><td>ns:mml="h 3.2</td><td>nttp://www.v 27</td></mml:math)>	ns:mml="h 3 . 2	nttp://www.v 27
18	Effective medium description of plasmonic couplings in disordered polymer and gold nanoparticle composites. Thin Solid Films, 2016, 603, 452-464.	1.8	14

#	Article	IF	CITATIONS
19	Growth mechanism of silicene on mel:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>Ag</mml:mi><mml:mo>(</mml:mo>by scanning tunneling microscopy measurements and initio initio</mml:mrow>	o> ₃ .mml:m	າກ _{ຊຸ້ງ} 11
20	Silicene multilayers on Ag(111) display a cubic diamondlike structure and a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>â^š</mml:mi><mml:mn>3<mml:mo>A—</mml:mo><mml:mspace width="0.16em"></mml:mspace><mml:mi>a^š</mml:mi><mml:mn>3</mml:mn></mml:mn></mml:mrow></mml:math> reconstruction induced by surfactant Ag atoms. Physical Review B, 2015, 92, .	n> <mml:r 3.2</mml:r 	nspace 36
21	Trapping of gold nanoparticles within arrays of topological defects: evolution of the LSPR anisotropy. Rendiconti Lincei, 2015, 26, 183-191.	2.2	1
22	Critical Au Concentration for the Stabilization of Au–Cu Nanoparticles on Rutile against Dissociation under Oxygen. Journal of Physical Chemistry Letters, 2015, 6, 2050-2055.	4.6	11
23	Tailoring Anisotropic Interactions between Soft Nanospheres Using Dense Arrays of Smectic Liquid Crystal Edge Dislocations. ACS Nano, 2015, 9, 11678-11689.	14.6	33
24	(Invited) Si Ultrathin Films on Silver Surfaces: An Intriguing Epitaxial System. ECS Transactions, 2014, 64, 89-97.	0.5	1
25	Monitoring Si growth on Ag(111) with scanning tunneling microscopy reveals that silicene structure involves silver atoms. Applied Physics Letters, 2014, 105, . Epitaxial growth of bimetallic Au-Cu nanoparticles on <mml:math< td=""><td>3.3</td><td>44</td></mml:math<>	3.3	44
26	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="normal">Ti<mml:msub><mml:mi mathvariant="normal">O<mml:mn>2</mml:mn></mml:mi </mml:msub>(110) followed<i>in situ</i>by scanning tunneling microscopy and grazing-incidence x-ray diffraction. Physical Review B,</mml:mi 	3.2	16
27	2014, 90, . Mechanism of Benzene Monolayer Formation on Si(100)-2×1 Studied by Surface Differential Reflectance Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 10740-10745.	3.1	4
28	Large differences in the optical properties of a single layer of Si on Ag(110) compared to silicene. Physical Review B, 2014, 89, .	3.2	25
29	Gold nanoparticle self-assembly moderated by a cholesteric liquid crystal. Soft Matter, 2013, 9, 9366.	2.7	37
30	Unusual Two-Stage Kinetics of Ethylene Adsorption on Si(100) Unraveled by Surface Optical Spectroscopy and MonteÂCarlo Simulation. Physical Review Letters, 2013, 111, 096103.	7.8	14
31	Growth of Si ultrathin films on silver surfaces: Evidence of an Ag(110) reconstruction induced by Si. Physical Review B, 2013, 88, .	3.2	44
32	HRTEM and STEM-HAADF characterisation of Auâ€"TiO2 and Auâ€"Al2O3 catalysts for a better understanding of the parameters influencing their properties in CO oxidation. Physical Chemistry Chemical Physics, 2013, 15, 3473.	2.8	22
33	Growth mode and self-organization of LuPc2on Si(001)-2 $ ilde{A}$ —1vicinal surfaces: An optical investigation. Physical Review B, 2012, 86, .	3.2	7
34	Triethylamine on Si(001)-(2 \tilde{A} — 1) at 300 K: Molecular Adsorption and Site Configurations Leading to Dissociation. Journal of Physical Chemistry C, 2012, 116, 16473-16486.	3.1	26
35	Substrate Effect on the Plasmon Resonance of Supported Flat Silver Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 2914-2922.	3.1	47
36	Kinetics of the plasmon optical response of Au nanoparticles/TiO2 catalyst under O2 and H2 followed by differential diffuse reflectance spectroscopy. European Physical Journal D, 2011, 63, 235-240.	1.3	7

#	Article	IF	CITATIONS
37	Temperature Dependent Optical Response of Si(100): Theory vs. Experiment. Materials Research Society Symposia Proceedings, 2011, 1370, 125.	0.1	2
38	Sixton rectangles in the structure of alumina ultrathin films on metals. Physical Review B, 2010, 81, .	3.2	12
39	Monitoring of the Plasmon Resonance of Gold Nanoparticles in Au/TiO ₂ Catalyst under Oxidative and Reducing Atmospheres. Journal of Physical Chemistry C, 2010, 114, 9008-9021.	3.1	42
40	Optical spectra and microscopic structure of the oxidized Si(100) surface: Combinedin situoptical experiments and first principles calculations. Physical Review B, 2009, 79, .	3.2	20
41	Reflectance-anisotropy spectroscopy and surface differential reflectance spectra at the Si(100) surface: Combined experimental and theoretical study. Physical Review B, 2009, 79, .	3.2	53
42	Adhesion of growing nanoparticles at a glance: Surface differential reflectivity spectroscopy and grazing incidence small angle x-ray scattering. Physical Review B, 2009, 79, .	3.2	46
43	All-optical determination of initial oxidation of $Si(100)$ and its kinetics. European Physical Journal B, 2008, 66, 427-431.	1.5	7
44	Adsorption of small hydrocarbon molecules on Si surfaces: Ethylene on Si(001). Physical Review B, 2008, 77, .	3.2	30
45	X-ray radiolysis induced formation of silver nano-particles: A SAXS and UV–visible absorption spectroscopy study. Nuclear Instruments & Methods in Physics Research B, 2007, 263, 436-440.	1.4	52
46	Adsorption of Phenylacetylene on Si(100)-2 $\tilde{A}-1$: \hat{A} Kinetics and Structure of the Adlayer. Journal of Physical Chemistry B, 2006, 110, 22635-22643.	2.6	23
47	RAS: An efficient probe to characterize Si(001)-(2×1) surfaces. Surface Science, 2006, 600, 5142-5149.	1.9	41
48	αâ^ÎPphase transition inMnAsâ^GaAs(001)thin films: An optical spectroscopic investigation. Physical Review B, 2006, 74, .	3. 2	14
49	RAS investigation of benzene adsorption on vicinal singledomain Si(001)-(2 \tilde{A} — 1) surfaces. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 4053-4057.	0.8	3
50	Investigation of cobalt nanodots on a Au vicinal surface by optical excitation of plasmon-like resonances using reflectance anisotropy spectroscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 4072-4077.	0.8	0
51	Differential reflectance spectroscopies of semiconductor surfaces. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1313-1324.	1.8	19
52	Investigation of molecule chemisorption on Si(001)2 \tilde{A} — 1 surfaces by surface reflectance spectroscopies. Physica Status Solidi (B): Basic Research, 2005, 242, 2696-2703.	1.5	12
53	Probing the Si-Si Dimer Breaking of Si(100) $2\tilde{A}$ —1 Surfaces upon Molecule Adsorption by Optical Spectroscopy. Physical Review Letters, 2005, 95, 117402.	7.8	42
54	Optical investigation of benzene adsorption on vicinal single-domain Si(001) \hat{a} (2 \tilde{A} -1) surfaces. Physical Review B, 2005, 72, .	3.2	27

#	Article	IF	CITATIONS
55	Optical response of clean and hydrogen-covered vicinal Si(001) 2 $\tilde{A}-1$ surfaces. Journal of Physics Condensed Matter, 2004, 16, S4301-S4311.	1.8	21
56	Combined scanning tunneling microscopy and reflectance anisotropy spectroscopy study of self-organized anisotropic cobalt nanodots on a vicinal ${\rm Au}(111)$ surface. Physical Review B, 2004, 70, .	3.2	17
57	Isotropic and anisotropic optical reflectances of clean and hydrogen-covered Si(001)2x1 surfaces. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2966-2970.	0.8	6
58	Real-Time Monitoring of Growing Nanoparticles. Science, 2003, 300, 1416-1419.	12.6	347
59	Monitoring the Transitions of the Charge-Induced Reconstruction of $Au(110)$ by Reflectance Anisotropy Spectroscopy. Physical Review Letters, 2002, 88, 147403.	7.8	51
60	Optical Investigation of the Clean and Oxidized In-Rich Surface of InAs(001). Physica Status Solidi A, 2001, 188, 1417-1421.	1.7	3
61	Effect of surface reconstruction on the low-temperature oxidation of InAs(100): Optical investigations. Physical Review B, 2001, 63, .	3.2	23
62	Multipolar plasma resonances in supported alkali-metal nanoparticles. Physica B: Condensed Matter, 2000, 279, 25-28.	2.7	9
63	LINEAR OPTICAL SPECTROSCOPIES FOR SURFACE STUDIES. Surface Review and Letters, 2000, 07, 399-410.	1.1	22
64	Substrate-induced multipolar resonances in supported free-electron metal spheres. Physical Review B, 1999, 60, 6018-6022.	3.2	30
65	In situ study of a thin metal film by optical means. Applied Surface Science, 1999, 142, 451-454.	6.1	29
66	Optical Reflectance Anisotropy Spectroscopy of the Au(110) Surface in Electrochemical Environment. Physica Status Solidi A, 1999, 175, 311-316.	1.7	32
67	Comparative Study of the Adsorption of Oxygen and Hydrogen on Si(111)7×7 by Surface Differential Reflectance Spectroscopy. Physica Status Solidi A, 1999, 175, 39-44.	1.7	2
68	Real-Time Investigation of Potassium Growth by Surface Differential Reflectance Spectroscopy. Physica Status Solidi A, 1998, 170, 221-226.	1.7	2
69	Silver particle sizes and shapes as determined during a deposit by in situ surface differential reflectance. Surface Science, 1998, 402-404, 433-436.	1.9	24
70	Formation and stability of small particles of potassium studied by real-time surface differential reflectance. Surface Science, 1998, 402-404, 445-449.	1.9	3
71	Adsorption kinetics of H on Si(111)7 \tilde{A} —7 by means of surface differential reflectivity. Physical Review B, 1997, 56, R4371-R4374.	3.2	31
72	2D and 3D silver adlayers on TiO2(110) surfaces. Surface Science, 1997, 377-379, 958-962.	1.9	28

#	Article	IF	CITATIONS
73	Optical study of potassium growth on the Si(100) surface. Applied Surface Science, 1996, 104-105, 147-151.	6.1	3
74	Optical spectroscopy study of hydrogenation of the Si(111)-7 \tilde{A} — 7 surface. Applied Surface Science, 1996, 104-105, 158-162.	6.1	4
75	Theoretical and Experimental Optical Spectroscopy Study of Hydrogen Adsorption at Si(111)-(7×7). Physical Review Letters, 1996, 76, 4923-4926.	7.8	71
76	Threshold and Linear Dispersion of the Plasma Resonance in Thin Ag Films. Europhysics Letters, 1995, 31, 311-316.	2.0	22
77	Hydrogen adsorption on Si surfaces studied by real-time surface reflectance spectroscopy. Surface Science, 1995, 331-333, 453-457.	1.9	11
78	Determination of the morphology of Ag deposits by photoreflectance. Physical Review B, 1994, 50, 1973-1975.	3.2	12
79	Surface optical reflectance spectroscopies: Application to semiconductor and metal surfaces. Physica A: Statistical Mechanics and Its Applications, 1994, 207, 293-301.	2.6	6
80	Optical reflectance anisotropy of Ag and Au (110) single crystals. Physica A: Statistical Mechanics and Its Applications, 1994, 207, 334-339.	2.6	35
81	O2/K/Ge(100) 2 \tilde{A} — 1 and O2/Cs/Ge(100) 2 \tilde{A} — 1: puzzling behavior of K and Cs in the oxidation of germanium. Applied Surface Science, 1993, 68, 433-438.	6.1	10
82	The growth of Ag on Si(100)-2 $ ilde{A}-1$. Applied Surface Science, 1993, 65-66, 735-741.	6.1	10
83	Optical anisotropies of Ag single crystals. Thin Solid Films, 1993, 233, 24-27.	1.8	2
84	Large anisotropy in the optical reflectance of Ag(110) single crystals: Experiment and theory. Physical Review Letters, 1993 , 71 , 2334 - 2337 .	7.8	81
85	Sudden beginning of metallic behavior at $Ag/Si(100)$ interface: A real-time photoreflectance-spectroscopy investigation. Physical Review B, 1993, 48, 14737-14740.	3.2	15
86	Optical evidence for interface electronic states at Ag/Si interfaces. Surface Science, 1992, 274, L509-L514.	1.9	17
87	Optical response of Si(111)-7 × 7. Surface Science, 1991, 251-252, 396-400.	1.9	27
88	Roughness induced at Si(111) surfaces by high temperature heating. Applied Surface Science, 1990, 41-42, 439-442.	6.1	32
89	Optical study of Ag overlayers deposited on Si(111)-7 × 7 as a function of temperature. Vacuum, 1990, 41, 684-686.	3.5	8
90	Enhanced optical absorption by silver overcoated with rough layers of pyridine. Surface Science, 1990, 226, 131-136.	1.9	4

#	Article	IF	Citations
91	Anomalous optical absorption in porous metal films. Physica A: Statistical Mechanics and Its Applications, 1989, 157, 371-376.	2.6	1
92	Optical and electromagnetic phenomena in porous coldly-deposited Ag films. Surface Science, 1989, 211-212, 775-781.	1.9	5
93	Comparative study of Ag growth on (111) Au and Cu substrates. Physical Review B, 1988, 37, 6235-6245.	3.2	28
94	Abnormal Optical Absorptions in Vapour-Quenched Aluminum. Europhysics Letters, 1988, 7, 617-621.	2.0	3
95	The growth of Ag monolayers on a polycrystalline (111) Al surface. Journal of Physics F: Metal Physics, 1987, 17, 1093-1104.	1.6	5
96	Electronic Properties of Ag Monolayers on (111) Cu. Europhysics Letters, 1987, 4, 723-728.	2.0	11
97	The growth of palladium on (111) polycrystalline silver surface. Surface Science, 1986, 177, 353-362.	1.9	6
98	Blue shift of the dipolar plasma resonance in small silver particles on an alumina surface. Physical Review B, 1986, 33, 2828-2830.	3.2	44
99	Surface reflectance spectroscopy: Its application to the study of very thin films. Thin Solid Films, 1985, 125, 129-142.	1.8	11
100	Surface-plasmon splitting on rough quenched Ag films. Physical Review B, 1985, 31, 5507-5508.	3.2	9
101	Study of ultra-thin copper films by surface reflectance spectroscopy. Surface Science, 1985, 162, 991-995.	1.9	3
102	Electronic properties of the Cs and O co-adsorption on Mo(100) at room temperature. Journal of Physics C: Solid State Physics, 1984, 17, 1761-1773.	1.5	28
103	Roughening of Ag surfaces by Ag deposits studied by differential reflectivity. Physical Review B, 1984, 30, 659-671.	3.2	46
104	Frequency Shifts of an Ensemble of Electric Dipole Resonances Near a Conducting Surface. Physical Review Letters, 1984, 53, 854-854.	7.8	4
105	Optical properties of discontinuous thin films and rough surfaces of silver. , 1984, , 93-117.		13
106	Abnormal optical absorption of quenched Ag films due to surface roughness. Surface Science Letters, 1983, 131, L367-L372.	0.1	1
107	Abnormal optical absorption of quenched Ag films due to surface roughness. Surface Science, 1983, 131, L367-L372.	1.9	11
108	Investigation of nonlocal electromagnetic phenomena in thin silver films near the plasma frequency. Journal of the Optical Society of America, 1983, 73, 80.	1.2	9

#	ARTICLE	IF	CITATIONS
109	Electron Spectroscopy on Adsorption of Cs on Transition Metals. Physica Scripta, 1983, T4, 110-112.	2.5	27
110	INVESTIGATION OF ELECTROMAGNETIC FIELDS AT A ROUGH Ag SURFACE BY DIFFERENTIAL REFLECTOMETRY OF Cu AND Al ADSORBATES. Journal De Physique Colloque, 1983, 44, C10-353-C10-356.	0.2	7
111	Roughening of a smooth cold Ag surface by Ag overlayers studied by differential reflectivity. Journal De Physique (Paris), Lettres, 1983, 44, 99-104.	2.8	10
112	The electronic structure of Cs adsorbed on Mo(111). Solid State Communications, 1982, 44, 1375-1378.	1.9	38
113	Optical evidence for longitudinal waves in very thin Ag layers. Surface Science, 1980, 101, 123-130.	1.9	19
114	The reflectance spectroscopy of silver surface layers on gold and aluminium substrates. Thin Solid Films, 1979, 57, 89-92.	1.8	3
115	Contribution of longitudinal polarization waves to the optical properties of Ag surface layers. Solid State Communications, 1979, 30, 755-760.	1.9	25