
Yue Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3147388/publications.pdf Version: 2024-02-01

VIIE WANC

#	Article	IF	CITATIONS
1	Glucagon-like peptide-1 receptor activation by liraglutide promotes breast cancer through NOX4/ROS/VEGF pathway. Life Sciences, 2022, 294, 120370.	4.3	6
2	ZEB1 induces ROS generation through directly promoting MCT4 transcription to facilitate breast cancer. Experimental Cell Research, 2022, 412, 113044.	2.6	8
3	Knockdown of FSTL1 inhibits microglia activation and alleviates depressive-like symptoms through modulating TLR4/MyD88/NF-IºB pathway in CUMS mice. Experimental Neurology, 2022, 353, 114060.	4.1	5
4	Mapping the amelogenin protein expression during porcine molar crown development. Annals of Anatomy, 2021, 234, 151665.	1.9	2
5	ZEB1 directly inhibits GPX4 transcription contributing to ROS accumulation in breast cancer cells. Breast Cancer Research and Treatment, 2021, 188, 329-342.	2.5	21
6	Blocking MCT4 SUMOylation inhibits the growth of breast cancer cells. Molecular Carcinogenesis, 2021, 60, 702-714.	2.7	4
7	miRâ€21a negatively modulates tumor suppressor genes <scp>PTEN</scp> and miRâ€200c and further promotes the transformation of M2 macrophages. Immunology and Cell Biology, 2018, 96, 68-80.	2.3	17
8	IDO1 impairs NK cell cytotoxicity by decreasing NKG2D/NKG2DLs via promoting miR-18a. Molecular Immunology, 2018, 103, 144-155.	2.2	31
9	Downregulation of <scp>MCT</scp> 4 for lactate exchange promotes the cytotoxicity of <scp>NK</scp> cells in breast carcinoma. Cancer Medicine, 2018, 7, 4690-4700.	2.8	40
10	ZEB1 induces ER-α promoter hypermethylation and confers antiestrogen resistance in breast cancer. Cell Death and Disease, 2017, 8, e2732-e2732.	6.3	64
11	Autophagy suppresses isoprenaline-induced M2 macrophage polarization via the ROS/ERK and mTOR signaling pathway. Free Radical Biology and Medicine, 2017, 110, 432-443.	2.9	87
12	The influence of miR-34a expression on stemness and cytotoxic susceptibility of breast cancer stem cells. Cancer Biology and Therapy, 2016, 17, 614-624.	3.4	11
13	PTEN inhibits macrophage polarization from M1 to M2 through CCL2 and VEGF-A reduction and NHERF-1 synergism. Cancer Biology and Therapy, 2015, 16, 297-306.	3.4	61
14	M-CSF cooperating with NFκB induces macrophage transformation from M1 to M2 by upregulating c-Jun. Cancer Biology and Therapy, 2014, 15, 99-107.	3.4	50
15	Impact of STAT4 gene silencing on the expression profile of proteins in EL-4 cells. Science Bulletin, 2009, 54, 3265-3270.	1.7	2