Isao Matsui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3146876/publications.pdf Version: 2024-02-01

Ιελο Μλτειμ

#	Article	IF	CITATIONS
1	Effect of interstitial carbon on the mechanical properties of electrodeposited bulk nanocrystalline Ni. Acta Materialia, 2013, 61, 3360-3369.	3.8	74
2	Effect of orientation on tensile ductility of electrodeposited bulk nanocrystalline Ni–W alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 578, 318-322.	2.6	45
3	Fabrication of bulk nanocrystalline Fe–Ni alloys with high strength and high ductility by an electrodeposition. Materials Letters, 2014, 116, 71-74.	1.3	44
4	Electrodeposition with intermittent addition of trimethylamine borane to produce ductile bulk nanocrystalline Ni–B alloys. Surface and Coatings Technology, 2018, 337, 411-417.	2.2	41
5	Enhancement in mechanical properties of bulk nanocrystalline Fe–Ni alloys electrodeposited using propionic acid. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 607, 505-510.	2.6	39
6	Strategy for Electrodeposition of Highly Ductile Bulk Nanocrystalline Metals with a Face-Centered Cubic Structure. Materials Transactions, 2014, 55, 1859-1866.	0.4	32
7	Effect of additives on tensile properties of bulk nanocrystalline Ni–W alloys electrodeposited from a sulfamate bath. Materials Letters, 2013, 99, 65-67.	1.3	30
8	Enhanced tensile ductility in bulk nanocrystalline nickel electrodeposited by sulfamate bath. Materials Letters, 2011, 65, 2351-2353.	1.3	29
9	Fabrication of bulk nanocrystalline Al electrodeposited from a dimethylsulfone bath. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 363-366.	2.6	26
10	Effect of low-temperature annealing on tensile behavior of electrodeposited bulk nanocrystalline Ni–W alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 709, 241-246.	2.6	26
11	Application of Electroforming Process to Bulk Amorphous Ni-W Alloy. Materials Transactions, 2011, 52, 37-40.	0.4	22
12	Improvement in tensile ductility of electrodeposited bulk nanocrystalline Ni–W by sulfamate bath using propionic acid. Microelectronic Engineering, 2012, 91, 98-101.	1.1	20
13	Influence of Closs Agent Types on Tensile Properties of Bulk Nanocrystalline Ni Electrodeposited from Sulfamate Bath. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2011, 62, 686.	0.1	15
14	Influence of Bath Composition on Tensile Ductility in Electrodeposited Bulk Nanocrystalline Nickel. Materials Transactions, 2011, 52, 142-146.	0.4	15
15	Controlling the Growth Mode for Producing Electrodeposited Bulk Nanocrystalline Metals and Alloys with Good Combination of Strength and Ductility. Materia Japan, 2016, 55, 166-170.	0.1	15
16	Reduction in sulfur content of electrodeposited bulk nanocrystalline Fe–Ni alloys using manganese chloride. Materials Letters, 2016, 175, 86-88.	1.3	15
17	Pre-electrodeposition process for improving tensile ductility of Al electrodeposited from a dimethylsulfone bath. Materials Letters, 2013, 109, 229-232.	1.3	14
18	Contribution of interstitial solute strengthening in aluminum. Philosophical Magazine Letters, 2014, 94, 63-71.	0.5	14

Isao Matsui

#	Article	IF	CITATIONS
19	Tensile Properties of Bulk Nanocrystalline Ni and Ni-W Fabricated by Sulfamate Bath. Materials Science Forum, 2010, 654-656, 1114-1117.	0.3	12
20	Thermal embrittlement and microstructure change in electrodeposited Ni. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 745, 168-175.	2.6	12
21	Relationship between grain boundary relaxation strengthening and orientation in electrodeposited bulk nanocrystalline Ni alloys. Materials Letters, 2017, 205, 211-214.	1.3	11
22	Imposition Time Dependent Microstructure Formation in 7150 Aluminum Alloy Solidified by an Electromagnetic Stirring Technique. Materials Transactions, 2018, 59, 1603-1609.	0.4	10
23	Microstructural heterogeneity in the electrodeposited Ni: insights from growth modes. Scientific Reports, 2020, 10, 5548.	1.6	10
24	Mechanical Behavior of Electrodeposited Bulk Nanocrystalline Fe-Ni Alloys. Materials Research, 2015, 18, 95-100.	0.6	9
25	Mechanical properties and microstructures after abnormal grain growth in electrodeposited Ni–W alloys. Materialia, 2019, 8, 100481.	1.3	9
26	Comparison of Tensile Properties of Bulk Nanocrystalline Ni–W Alloys Electrodeposited by Direct, Pulsed, and Pulsed-Reverse Currents. Materials Transactions, 2018, 59, 123-128.	0.4	8
27	Suppression of the thermal embrittlement induced by sulfur segregation to grain boundary in Ni-based electrodeposits. Materialia, 2019, 6, 100312.	1.3	8
28	Reduction of impurity contents in aluminum plates electrodeposited from a dimethylsulfone-aluminum chloride bath. Journal of Alloys and Compounds, 2019, 783, 919-926.	2.8	8
29	Direct observations of nucleant TiB2 particles in cast aluminum by synchrotron radiation multiscale tomography. Materialia, 2020, 10, 100663.	1.3	7
30	Electrodeposition of bulk nanocrystalline Ni–Fe–P alloys and their mechanical and soft magnetic properties. Materialia, 2020, 12, 100766.	1.3	7
31	High Tensile Ductility in Electrodeposited Bulk Nanocrystalline Ni–W Alloys. Advanced Materials Research, 0, 922, 497-502.	0.3	5
32	Development of Electrodeposition Bath Using a Substitute of Propionic Acid for Bulk Nanocrystalline Ni-W Alloys with High Ductility. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2016, 80, 217-223.	0.2	5
33	An Electrodeposition Process for Producing Ductile Bulk Nanocrystalline Ni–Fe Alloys in a Wide Current Density Range. Materials Transactions, 2018, 59, 1354-1358.	0.4	4
34	Direct observation of strain-stored grains in electrodeposited nanocrystalline Ni-W alloys by low-angle annular dark field diffraction contrast imaging. Scripta Materialia, 2019, 166, 29-33.	2.6	4
35	Fabricating Bulk Nanocrystalline Ni–W–B Alloys by Electrodeposition. Materials Transactions, 2017, 58, 1038-1041.	0.4	3
36	Revealing the intrinsic ductility of electrodeposited nanocrystalline metals. Materials Letters, 2019, 235, 224-227.	1.3	3

Isao Matsui

#	Article	IF	CITATIONS
37	Fabrication of Bulk Ni–Mo Alloys by Electrodeposition with Intermittent Addition of Sodium Molybdate. Materials Transactions, 2018, 59, 1823-1828.	0.4	2
38	Ductile electrodeposited Al from a dimethylsulfone bath with trace amounts of tin chloride. Materials Letters, 2019, 244, 192-194.	1.3	2
39	Fabrication of Electrodeposited Bulk Nanocrystalline Ni-Mo Alloys from a Gluconate Bath And Their Mechanical Properties. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2016, 67, 434-439.	0.1	1
40	Connecting Grain Boundary Stability With Tensile Behavior in Electrodeposited Bulk Nanocrystalline Ni Alloys. Materia Japan, 2018, 57, 479-486.	0.1	1
41	Microstructure refinement of 7150 aluminum alloy ingot with rectangular section by applying forward-reverse electromagnetic stirring. Keikinzoku/Journal of Japan Institute of Light Metals, 2019, 69, 30-35.	0.1	1
42	Electrodeposition for Bulk Nanocrystalline Ni Alloys and Their Mechanical Properties. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2019, 70, 103-108.	0.1	1
43	Influence of Impurities on Mechanical Properties of Electrodeposited Bulk Nanocrystalline Al. Advanced Materials Research, 0, 922, 574-579.	0.3	0
44	Preparatory Electrodeposition Process for High Purity Bulk Aluminum. Advanced Materials Research, 0, 922, 237-241.	0.3	0
45	Effect of machining and storage conditions on hydrogen analysis for 7075 aluminum alloy. Keikinzoku/Journal of Japan Institute of Light Metals, 2016, 66, 68-71.	0.1	0
46	Development of Electrodeposition Process Based on Chloride Electrolytes for Bulk Pure Fe with Plastic Deformability. Materials Transactions, 2019, 60, 130-135.	0.4	0
47	OS19-1-3 Influence of Gloss Agents on Mechanical properties of Electrodeposited Bulk Nanocrystalline Ni. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2011, 2011.10, _OS19-1-3	0.0	0
48	OS19-1-4 Fabrication of Bulk Nanocrystalline Ni-W with Plastic Deformability by Electrodeposition. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2011, 2011.10, _OS19-1-4	0.0	0
49	Fabrication of bulk nanocrystalline Ni-W with plastic deformability electrodeposited from a sulfamate bath. , 2013, , 3291-3296.		0
50	Promotion of Separation of Two-Phase Liquid Metals by Applying Mechanical Vibration. Minerals, Metals and Materials Series, 2018, , 1163-1166.	0.3	0
51	Reduction of hydrogen content in 7000 series aluminum alloys by heat treatment in air. Keikinzoku/Journal of Japan Institute of Light Metals, 2018, 68, 150-151.	0.1	0