Roger Patient

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3146570/publications.pdf Version: 2024-02-01

ROCER PATIENT

#	Article	IF	CITATIONS
1	The roles and controls of GATA factors in blood and cardiac development. IUBMB Life, 2020, 72, 39-44.	3.4	21
2	Deletion of a conserved Gata2 enhancer impairs haemogenic endothelium programming and adult Zebrafish haematopoiesis. Communications Biology, 2020, 3, 71.	4.4	26
3	Functional Heterogeneity within the Developing Zebrafish Epicardium. Developmental Cell, 2020, 52, 574-590.e6.	7.0	48
4	Blood stem cell-forming haemogenic endothelium in zebrafish derives from arterial endothelium. Nature Communications, 2019, 10, 3577.	12.8	37
5	Gene Regulatory Networks Governing the Generation and Regeneration of Blood. Journal of Computational Biology, 2019, 26, 719-725.	1.6	9
6	Etv6 activates vegfa expression through positive and negative transcriptional regulatory networks in Xenopus embryos. Nature Communications, 2019, 10, 1083.	12.8	12
7	An optimized pipeline for parallel image-based quantification of gene expression and genotyping after <i>in situ</i> hybridization. Biology Open, 2018, 7, .	1.2	21
8	New methods for computational decomposition of whole-mount in situ images enable effective curation of a large, highly redundant collection of Xenopus images. PLoS Computational Biology, 2018, 14, e1006077.	3.2	1
9	Dissecting BMP signaling input into the gene regulatory networks driving specification of the blood stem cell lineage. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5814-5821.	7.1	32
10	Initial seeding of the embryonic thymus by immune-restricted lympho-myeloid progenitors. Nature Immunology, 2016, 17, 1424-1435.	14.5	49
11	Transforming Growth Factor β Drives Hemogenic Endothelium Programming and the Transition to Hematopoietic Stem Cells. Developmental Cell, 2016, 38, 358-370.	7.0	75
12	The embryonic origins and genetic programming of emerging haematopoietic stem cells. FEBS Letters, 2016, 590, 4002-4015.	2.8	17
13	A Novel TGFβ Modulator that Uncouples R-Smad/I-Smad-Mediated Negative Feedback from R-Smad/Ligand-Driven Positive Feedback. PLoS Biology, 2015, 13, e1002051.	5.6	7
14	Short linear motif acquisition, exon formation and alternative splicing determine a pathway to diversity for NCoR-family co-repressors. Open Biology, 2015, 5, 150063.	3.6	8
15	FGF signalling restricts haematopoietic stem cell specification via modulation of the BMP pathway. Nature Communications, 2014, 5, 5588.	12.8	45
16	Developmental hematopoiesis: Ontogeny, genetic programming and conservation. Experimental Hematology, 2014, 42, 669-683.	0.4	110
17	Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos. Development (Cambridge), 2014, 141, 2429-2440.	2.5	64
18	VEGFA-dependent and -independent pathways synergise to drive Scl expression and initiate programming of the blood stem cell lineage in <i>Xenopus</i> . Development (Cambridge), 2013, 140, 2632-2642.	2.5	45

ROGER PATIENT

#	Article	IF	CITATIONS
19	Uncoupling VEGFA Functions in Arteriogenesis and Hematopoietic Stem Cell Specification. Developmental Cell, 2013, 24, 144-158.	7.0	58
20	miR-142-3p Controls the Specification of Definitive Hemangioblasts during Ontogeny. Developmental Cell, 2013, 26, 237-249.	7.0	62
21	Fgf differentially controls cross-antagonism between cardiac and haemangioblast regulators. Development (Cambridge), 2011, 138, 3235-3245.	2.5	52
22	The Earliest Thymic T Cell Progenitors Sustain B Cell and Myeloid Lineage Potentials. Blood, 2011, 118, 2335-2335.	1.4	0
23	Genetic control of hematopoietic development in Xenopus and zebrafish. International Journal of Developmental Biology, 2010, 54, 1139-1149.	0.6	50
24	Tel1/ETV6 Specifies Blood Stem Cells through the Agency of VEGF Signaling. Developmental Cell, 2010, 18, 569-578.	7.0	47
25	Common genetic control of haemangioblast and cardiac development in zebrafish. Development (Cambridge), 2009, 136, 1465-1474.	2.5	47
26	Fli1 Acts at the Top of the Transcriptional Network Driving Blood and Endothelial Development. Current Biology, 2008, 18, 1234-1240.	3.9	174
27	<i>Xenopus</i> as a Model to Study Endothelial Development and Modulation. , 2007, , 142-149.		1
28	Scl is required for dorsal aorta as well as blood formation in zebrafish embryos. Blood, 2005, 105, 3502-3511.	1.4	153
29	Hedgehog Signaling Is Required for Adult Blood Stem Cell Formation in Zebrafish Embryos. Developmental Cell, 2005, 8, 389-400.	7.0	302
30	Tracking and Programming Early Hematopoietic Cells in <1>Xenopus 1 Embryos. , 2005, 105, 123-136.		9
31	Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP inXenopus. Development (Cambridge), 2002, 129, 5683-5695.	2.5	111
32	Distinct Origins of Adult and Embryonic Blood in Xenopus. Cell, 2000, 102, 787-796.	28.9	216