
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3146487/publications.pdf Version: 2024-02-01

KAZHE SEMBA

#	Article	IF	CITATIONS
1	Altered circadian activity and sleep/wake rhythms in the stable tubule only polypeptide (STOP) null mouse model of schizophrenia. Sleep, 2021, 44, .	0.6	4
2	Microglia dynamics in sleep/wake states and in response to sleep loss. Neurochemistry International, 2021, 143, 104944.	1.9	35
3	Homeostatic sleep and body temperature responses to acute sleep deprivation are preserved following chronic sleep restriction in rats. Journal of Sleep Research, 2021, 30, e13348.	1.7	3
4	No loss of orexin/hypocretin, melanin oncentrating hormone or locus coeruleus noradrenergic neurons in a rat model of chronic sleep restriction. European Journal of Neuroscience, 2021, 54, 6027-6043.	1.2	3
5	Homeostatic state of microglia in a rat model of chronic sleep restriction. Sleep, 2020, 43, .	0.6	17
6	Sleep deprivation-induced pre- and postsynaptic modulation of orexin neurons. Neuropharmacology, 2019, 154, 50-60.	2.0	13
7	Sleep Deprivation Distinctly Alters Glutamate Transporter 1 Apposition and Excitatory Transmission to Orexin and MCH Neurons. Journal of Neuroscience, 2018, 38, 2505-2518.	1.7	32
8	Region-specific increases in FosB/ΔFosB immunoreactivity in the rat brain in response to chronic sleep restriction. Behavioural Brain Research, 2017, 322, 9-17.	1.2	7
9	Sex differences in age-related changes in the sleep-wake cycle. Frontiers in Neuroendocrinology, 2017, 47, 66-85.	2.5	95
10	Disruptions of Sleep/Wake Patterns in the Stable Tubule Only Polypeptide (STOP) Null Mouse Model of Schizophrenia. Schizophrenia Bulletin, 2016, 42, 1207-1215.	2.3	11
11	Psychomotor Vigilance Task Performance During and Following Chronic Sleep Restriction in Rats. Sleep, 2015, 38, 515-528.	0.6	25
12	Increases in mature brain-derived neurotrophic factor protein in the frontal cortex and basal forebrain during chronic sleep restriction in rats: Possible role in initiating allostatic adaptation. Neuroscience, 2014, 277, 174-183.	1.1	23
13	Social and environmental contexts modulate sleep deprivation-induced c-Fos activation in rats. Behavioural Brain Research, 2013, 256, 238-249.	1.2	11
14	Ovarian hormones promote recovery from sleep deprivation by increasing sleep intensity in middle-aged ovariectomized rats. Hormones and Behavior, 2013, 63, 566-576.	1.0	18
15	Estradiol treatment modulates spontaneous sleep and recovery after sleep deprivation in castrated male rats. Behavioural Brain Research, 2012, 226, 456-464.	1.2	23
16	Behavioural and neuronal activation after microinjections of AMPA and NMDA into the perifornical lateral hypothalamus in rats. Behavioural Brain Research, 2011, 224, 376-86.	1.2	25
17	Effects of memantine and donepezil on cortical and hippocampal acetylcholine levels and object recognition memory in rats. Neuropharmacology, 2011, 61, 891-899.	2.0	33
18	Female Reproductive Hormones Alter Sleep Architecture in Ovariectomized Rats. Sleep, 2011, 34, 519-530.	0.6	52

#	Article	IF	CITATIONS
19	Basal forebrain regulation of cortical activity and sleep-wake states: Roles of cholinergic and non-cholinergic neurons. Sleep and Biological Rhythms, 2011, 9, 65-70.	0.5	20
20	Arousal Effect of Caffeine Depends on Adenosine A2A Receptors in the Shell of the Nucleus Accumbens. Journal of Neuroscience, 2011, 31, 10067-10075.	1.7	267
21	Sleep, Rhythms, and the Endocrine Brain: Influence of Sex and Gonadal Hormones. Journal of Neuroscience, 2011, 31, 16107-16116.	1.7	233
22	Short-term sleep deprivation may alter the dynamics of hippocampal cell proliferation in adult rats. Neuroscience, 2010, 170, 1140-1152.	1.1	39
23	Role of polysialylated neural cell adhesion molecule in rapid eye movement sleep regulation in rats. European Journal of Neuroscience, 2009, 30, 2190-2204.	1.2	8
24	Transforming growth factor-α and glial fibrillary acidic protein in the hamster circadian system: Daily profile and cellular localization. Brain Research, 2008, 1197, 94-105.	1.1	17
25	Lack of estradiol modulation of sleep deprivation-induced c-Fos in the rat brain. Physiology and Behavior, 2008, 95, 562-569.	1.0	3
26	Effects of Ibotenate and 192IgG-Saporin Lesions of the Nucleus Basalis Magnocellularis/Substantia Innominata on Spontaneous Sleep and Wake States and on Recovery Sleep after Sleep Deprivation in Rats. Journal of Neuroscience, 2008, 28, 491-504.	1.7	115
27	Inactivation of prefrontal cortex abolishes cortical acetylcholine release evoked by sensory or sensory pathway stimulation in the rat. Neuroscience, 2007, 149, 232-241.	1.1	44
28	Vesicular glutamate transporter 3 immunoreactivity is present in cholinergic basal forebrain neurons projecting to the basolateral amygdala in rat. Journal of Comparative Neurology, 2006, 498, 690-711.	0.9	72
29	Differential c-Fos immunoreactivity in arousal-promoting cell groups following systemic administration of caffeine in rats. Journal of Comparative Neurology, 2006, 498, 667-689.	0.9	64
30	Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: Implications for the circadian control of behavioural state. Neuroscience, 2005, 130, 165-183.	1.1	236
31	Phylogenetic and ontogenetic aspects of the basal forebrain cholinergic neurons and their innervation of the cerebral cortex. Progress in Brain Research, 2004, 145, 1-43.	0.9	36
32	Links between the suprachiasmatic nucleus and sleep-wake centers: Finding pathways. Sleep and Biological Rhythms, 2004, 2, S27-S29.	0.5	0
33	Cortical acetylcholine release and electroencephalogram activation evoked by ionotropic glutamate receptor agonists in the rat basal forebrain. Neuroscience, 2004, 123, 785-792.	1.1	31
34	Modality- and region-specific acetylcholine release in the rat neocortex. Neuroscience, 2004, 126, 257-262.	1.1	64
35	Indirect projections from the suprachiasmatic nucleus to the median preoptic nucleus in rat. Brain Research, 2003, 987, 100-106.	1.1	48
36	Activation of cholinergic and adrenergic receptors increases the concentration of extracellular adenosine in the cerebral cortex of unanesthetized rat. Neuroscience, 2003, 117, 119-127.	1.1	12

#	Article	IF	CITATIONS
37	Stimulant doses of caffeine induce c-FOS activation in orexin/hypocretin-containing neurons in rat. Neuroscience, 2003, 121, 269-275.	1.1	35
38	Substance P in the descending cholinergic projection to REM sleep-induction regions of the rat pontine reticular formation: anatomical and electrophysiological analyses. European Journal of Neuroscience, 2002, 15, 176-196.	1.2	25
39	Indirect projections from the suprachiasmatic nucleus to the ventrolateral preoptic nucleus: a dual tract-tracing study in rat. European Journal of Neuroscience, 2002, 16, 1195-1213.	1.2	81
40	M3 Muscarinic Receptor-Mediated Enhancement of NMDA-Evoked Adenosine Release in Rat Cortical Slices In Vitro. Journal of Neurochemistry, 2002, 69, 1066-1072.	2.1	9
41	Sleep deprivation-induced c-fos and junB expression in the rat brain: effects of duration and timing. Behavioural Brain Research, 2001, 120, 75-86.	1.2	50
42	Electrophysiological analysis of suprachiasmatic nucleus projections to the ventrolateral preoptic area in the rat. European Journal of Neuroscience, 2001, 14, 1257-1274.	1.2	58
43	Inhibition of synaptically evoked cortical acetylcholine release by intracortical glutamate: involvement of GABAergic neurons. European Journal of Neuroscience, 2001, 14, 38-46.	1.2	25
44	Activation of metabotropic glutamate receptors increases extracellular adenosine in vivo. NeuroReport, 2000, 11, 3489-3492.	0.6	15
45	Inhibition of synaptically evoked cortical acetylcholine release by adenosine: an in vivo microdialysis study in the rat. Neuroscience, 2000, 97, 219-226.	1.1	37
46	Electrophysiology and pharmacology of projections from the suprachiasmatic nucleus to the ventromedial preoptic area in rat. Neuroscience, 2000, 98, 715-728.	1.1	38
47	Preface. Behavioural Brain Research, 2000, 115, 115.	1.2	0
48	Multiple output pathways of the basal forebrain: organization, chemical heterogeneity, and roles in vigilance. Behavioural Brain Research, 2000, 115, 117-141.	1.2	239
49	Actions of histamine in the suprachiasmatic nucleus of the Syrian hamster. Brain Research, 1998, 783, 1-9.	1.1	9
50	Immunohistochemical localization of caffeine-induced c-Fos protein expression in the rat brain. , 1998, 401, 89-108.		45
51	A comparison of (±)epibatidine with NMDA in releasing [3H]noradrenaline and adenosine from slices of rat hippocampus and parietal cortex. Neuroscience Letters, 1997, 235, 125-128.	1.0	2
52	Sources of p75-nerve growth factor receptor-like immunoreactivity in the rat suprachiasmatic nucleus. Neuroscience, 1997, 77, 461-472.	1.1	24
53	Discriminable excitotoxic effects of ibotenic acid, AMPA, NMDA and quinolinic acid in the rat laterodorsal tegmental nucleus. Brain Research, 1997, 755, 17-27.	1.1	56
54	Distribution of ionotropic glutamate receptor subunit immunoreactivity in the suprachiasmatic nucleus and intergeniculate leaflet of the hamster. Brain Research, 1997, 756, 215-224.	1.1	30

#	Article	IF	CITATIONS
55	Phasic relationship between the activity of basal forebrain neurons and cortical EEG in urethane-anesthetized rat. Brain Research, 1997, 759, 112-121.	1.1	64
56	Colocalization of ionotropic glutamate receptor subunits with NADPH-diaphorase-containing neurons in the rat mesopontine tegmentum. Journal of Comparative Neurology, 1996, 368, 17-32.	0.9	128
57	Distribution of pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in the hypothalamus and extended amygdala of the rat. Journal of Comparative Neurology, 1996, 376, 278-294.	0.9	113
58	Extent of colocalization of serotonin and GABA in the neurons of the rat raphe nuclei. Brain Research, 1995, 677, 39-49.	1.1	134
59	An ultrastructural study of cholinergic and non-cholinergic neurons in the laterodorsal and pedunculopontine tegmental nuclei in the rat. Neuroscience, 1995, 68, 837-853.	1.1	82
60	Serotonergic synaptic input to cholinergic neurons in the rat mesopontine tegmentum. Brain Research, 1994, 647, 299-306.	1.1	97
61	A direct retinal projection to the dorsal raphe nucleus in the rat. Brain Research, 1994, 635, 159-168.	1.1	98
62	Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat. Journal of Comparative Neurology, 1993, 330, 543-556.	0.9	132
63	Localization of cholinergic neurons in the forebrain and brainstem that project to the suprachiasmatic nucleus of the hypothalamus in rat. Journal of Comparative Neurology, 1993, 335, 295-307.	0.9	147
64	Dual projections of single cholinergic and aminergic brainstem neurons to the thalamus and basal forebrain in the rat. Brain Research, 1993, 604, 41-52.	1.1	107
65	Serotonin hyperpolarizes cholinergic low-threshold burst neurons in the rat laterodorsal tegmental nucleus in vitro Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 743-747.	3.3	308
66	Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: A retro- and antero-grade transport and immunohistochemical study. Journal of Comparative Neurology, 1992, 323, 387-410.	0.9	569
67	Single cholinergic mesopontine tegmental neurons project to both the pontine reticular formation and the thalamus in the rat. Neuroscience, 1990, 38, 643-654.	1.1	161
68	Brainstem projecting neurons in the rat basal forebrain: Neurochemical, topographical, and physiological distinctions from cortically projecting cholinergic neurons. Brain Research Bulletin, 1989, 22, 501-509.	1.4	57
69	A heavy metal marker of the developing striatal mosaic. Developmental Brain Research, 1989, 45, 155-159.	2.1	32
70	Basal forebrain and mesopontine tegmental projections to the reticular thalamic nucleus: an axonal collateralization and immunohistochemical study in the rat. Brain Research, 1989, 505, 55-65.	1.1	91
71	Dopaminergic neurons in the nucleus raphe dorsalis innervate the prefrontal cortex in the rat: a combined retrograde tracing and immunohistochemical study using anti-dopamine serum. Brain Research, 1989, 496, 373-376.	1.1	60
72	Reassessing the cholinergic basal forebrain: nomenclature schemata and concepts. Trends in Neurosciences, 1989, 12, 483-485.	4.2	64

#	Article	IF	CITATIONS
73	Chapter 4 Organization of central cholinergic systems. Progress in Brain Research, 1989, 79, 37-63.	0.9	137
74	Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and electrophysiology in the rat. Journal of Comparative Neurology, 1988, 267, 433-453.	0.9	266
75	Time of origin of cholinergic neurons in the rat basal forebrain. Journal of Comparative Neurology, 1988, 269, 87-95.	0.9	149
76	Ontogeny of histidine-decarboxylase-immunoreactive neurons in the tuberomammillary nucleus of the rat hypothalamus: Time of origin and development of transmitter phenotype. Journal of Comparative Neurology, 1988, 276, 304-311.	0.9	33
77	Non-cholinergic basal forebrain neurons project to the contralateral basal forebrain in the rat. Neuroscience Letters, 1988, 84, 23-28.	1.0	26
78	Different times of origin of choline acetyltransferase- and somatostatin-immunoreactive neurons in the rat striatum. Journal of Neuroscience, 1988, 8, 3937-3944.	1.7	48
79	Morphology of cortically projecting basal forebrain neurons in the rat as revealed by intracellular iontophoresis of horseradish peroxidase. Neuroscience, 1987, 20, 637-651.	1.1	48
80	Physiological evidence for subpopulations of cortically projecting basal forebrain neurons in the anesthetized rat. Neuroscience, 1987, 20, 629-636.	1.1	40
81	En bloc immunohistochemistry reveals extensive distribution of histidine decarboxylase-immunoreactive neurons on the ventral surface of the rat hypothalamus. Neuroscience Letters, 1987, 77, 137-142.	1.0	14
82	Neurotransmitters in the Mammalian Striatum: Neuronal Circuits and Heterogeneity. Canadian Journal of Neurological Sciences, 1987, 14, 386-394.	0.3	18
83	Dorsal horn cells in the cat responding to stimulation of the plantar cushion. Brain Research, 1986, 383, 68-82.	1.1	14
84	The facial ?motor? nerve of the rat: Control of vibrissal movement and examination of motor and sensory components. Journal of Comparative Neurology, 1986, 247, 144-158.	0.9	181
85	An electron microscopic study of terminals of rapidly adapting mechanoreceptive afferent fibers in the cat spinal cord. Journal of Comparative Neurology, 1985, 232, 229-240.	0.9	59
86	4-Aminopyridine induces expansion of cutaneous receptive fields of dorsal horn cells. Brain Research, 1985, 343, 398-402.	1.1	6
87	Trigeminal sensorimotor mechanisms and eating in the rat. Brain Research, 1984, 308, 149-154.	1.1	15
88	Examination of geniculate ganglion cells contributing sensory fibers to the rat facial â€~motor' nerve. Brain Research, 1984, 308, 354-359.	1.1	18
89	Ultrastructure of Pacinian corpuscle primary afferent terminals in the cat spinal cord. Brain Research, 1984, 302, 135-150.	1.1	51
90	Neural substrates of two different rhythmical vibrissal movements in the rat. Neuroscience, 1984, 12, 761-774.	1.1	167

#	Article	IF	CITATIONS
91	Organization of HRP-labeled trigeminal mandibular, primary afferent neurons in the rat. Journal of Comparative Neurology, 1983, 215, 397-420.	0.9	211
92	An electron microscopic study of primary afferent terminals from slowly adapting type I receptors in the cat. Journal of Comparative Neurology, 1983, 221, 466-481.	0.9	74
93	Trigeminal primary afferents project bilaterally to dorsal horn and ipsilaterally to cerebellum, reticular formation, and cuneate, solitary, supratrigeminal and vagal nuclei. Brain Research, 1982, 246, 285-291.	1.1	135
94	Norepinephrine reduces excitability of single cutaneous primary afferent C-fibers in the cat spinal cord. Brain Research, 1981, 219, 456-463.	1.1	44
95	Synchrony among rhythmical facial tremor, neocortical â€~ALPHA' waves, and thalamic non-sensory neuronal bursts in intact awake rats. Brain Research, 1980, 195, 281-298.	1.1	159
96	Phase of the theta wave in relation to different limb movements in awake rats. Electroencephalography and Clinical Neurophysiology, 1978, 44, 61-71.	0.3	57