Francisco Prieto-Dapena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3146478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kinetics of the BpCu-Catalyzed Carbene Transfer Reaction (Bp = Dihydridobis(1-pyrazolyl)borate). Is a 14-Electron Species the Real Catalyst for the General Copper-Mediated Olefin Cyclopropanation?. Organometallics, 1999, 18, 2601-2609.	2.3	65
2	Mechanistic Determination Using Arrays of Variable-Sized Channel Microband Electrodes:  The Oxidation of Ascorbic Acid in Aqueous Solution. Journal of Physical Chemistry B, 1998, 102, 7442-7447.	2.6	55
3	Adenine adsorption on Au(111) and Au(100) electrodes: Characterisation, surface reconstruction effects and thermodynamic study. Electrochimica Acta, 2007, 52, 3168-3180.	5.2	41
4	Detection of Tl(I) Transport through a Gramicidinâ^'Dioleoylphosphatidylcholine Monolayer Using the Substrate Generationâ^Tip Collection Mode of Scanning Electrochemical Microscopy. Langmuir, 2002, 18, 9453-9461.	3.5	39
5	Electrochemical Impedance Study of Tl+Reduction through Gramicidin Channels in Self-Assembled Gramicidin-Modified Dioleoylphosphatidylcholine Monolayers on Mercury Electrodes. Langmuir, 1999, 15, 3672-3678.	3.5	38
6	Adenine Adsorption at Single Crystal and Thin-Film Gold Electrodes: An In Situ Infrared Spectroscopy Study. Journal of Physical Chemistry C, 2009, 113, 18784-18794.	3.1	34
7	In situ Fourier transform infrared reflection absortion spectroscopy study of adenine adsorption on gold electrodes in basic media. Electrochimica Acta, 2014, 140, 476-481.	5.2	30
8	Channel Microband Electrode Arrays for Mechanistic Electrochemistry. Two-Dimensional Voltammetry:Â Transport-Limited Currents. Analytical Chemistry, 1998, 70, 1707-1720.	6.5	28
9	Electrochemical STM study of the adsorption of adenine on Au(111) electrodes. Electrochemistry Communications, 2013, 35, 61-64.	4.7	26
10	Impedance measurements with phospholipid-coated mercury electrodes. Journal of Electroanalytical Chemistry, 1998, 454, 155-160.	3.8	25
11	Channel electrode voltammetry and reversible electro-dimerisation processes. The reduction of the methyl viologen di-cation in aqueous solution. Journal of Electroanalytical Chemistry, 1997, 432, 63-70.	3.8	24
12	In situ infrared study of adenine adsorption on gold electrodes in acid media. Electrochimica Acta, 2012, 82, 534-542.	5.2	22
13	Quantitative Subtractively Normalized Interfacial Fourier Transform Infrared Reflection Spectroscopy Study of the Adsorption of Adenine on Au(111) Electrodes. Langmuir, 2016, 32, 3827-3835.	3.5	19
14	Voltammetry under High Mass Transport Conditions. The High-Speed Channel Electrode and Transient Measurements. Journal of Physical Chemistry B, 1997, 101, 5540-5544.	2.6	15
15	Electrode processes with coupled chemistry. Heterogeneous or homogeneous chemical reaction? The reduction of nitromethane in basic aqueous solution. Journal of Electroanalytical Chemistry, 1997, 437, 183-189.	3.8	15
16	Impedance voltammetry of electro-dimerization mechanisms: Application to the reduction of the methyl viologen di-cation at mercury electrodes and aqueous solutions. Journal of Electroanalytical Chemistry, 1998, 443, 227-235.	3.8	15
17	Heterogeneous ECE Processes at Channel Electrodes:  Analytical Theory. Distinguishing Hetero- and Homogeneous ECE Reactions. Journal of Physical Chemistry B, 1998, 102, 1515-1521.	2.6	14
18	Impedance study of thallous ion movement through gramicidin–dioleoylphosphatidylcholine self-assembled monolayers supported on mercury electrodes: the C–(C)–CE mechanism. Journal of Electroanalytical Chemistry, 2003, 550-551, 253-265.	3.8	13

#	Article	IF	CITATIONS
19	Interfacial properties of hypoxanthine adsorbed at the mercuryelectrolyte interface. Journal of Electroanalytical Chemistry, 1997, 431, 257-267.	3.8	12
20	Kinetics of adenine adsorption on Au(111) electrodes: An impedance study. Electrochimica Acta, 2010, 55, 3301-3306.	5.2	12
21	Impedance Analysis of the Mechanism for Nitromethane Reduction in Aqueous Solutions:Â The Influence of pH. The Journal of Physical Chemistry, 1996, 100, 16346-16355.	2.9	11
22	Evidences of adenine–thymine Interactions at gold electrodes interfaces as provided by in-situ infrared spectroscopy. Electrochemistry Communications, 2013, 35, 53-56.	4.7	11
23	TAUTOMERISM OF ADSORBED THYMINE ON GOLD ELECTRODES: AN IN SITU SURFACE-ENHANCED INFRARED SPECTROSCOPY STUDY. Electrochimica Acta, 2016, 201, 300-310.	5.2	11
24	Electrochecmical Impedance Spectroscopy analysis of an adsorption process with a coupled preceding chemical step. Electrochimica Acta, 2017, 232, 164-173.	5.2	11
25	Electrochemical Impedance Spectroscopy study of the adsorption of adenine on Au(111) electrodes as a function of the pH. Journal of Electroanalytical Chemistry, 2017, 793, 209-217.	3.8	11
26	Analysis of the faradaic admittance for an ECE mechanism in the case of non-Randles behaviour with frequency and its application to nitromethane reduction. Journal of Electroanalytical Chemistry, 1992, 327, 1-23.	3.8	10
27	Impedance voltammetric analysis of a consecutive E-C-E mechanism with two diffusing intermediates with application to the reduction of nitromethane. Journal of Electroanalytical Chemistry, 1996, 405, 1-14.	3.8	10
28	Electroreduction of Nitromethane in Aqueous Solution. A Surface Indifferent Electrocatalytic Reaction. Journal of Physical Chemistry B, 1998, 102, 9187-9190.	2.6	10
29	Phospholipid and gramicidin–phospholipid-coated mercury electrodes as model systems of partially blocked electrodes. Journal of Electroanalytical Chemistry, 2010, 649, 42-47.	3.8	10
30	Electrochemical characterization of a mixed lipid monolayer supported on Au(111) electrodes with implications for doxorubicin delivery. Journal of Electroanalytical Chemistry, 2018, 815, 246-254.	3.8	10
31	Channel Microband Electrode Arrays for Mechanistic Electrochemistry. Two-Dimensional Voltammetry: Electrode Kinetics. Electroanalysis, 1999, 11, 541-545.	2.9	9
32	In situ surface-enhanced infrared spectroscopy study of adenine-thymine co-adsorption on gold electrodes as a function of the pH. Journal of Electroanalytical Chemistry, 2018, 819, 417-427.	3.8	9
33	Impedance analysis of the reduction of pyrimidine at the dropping mercury electrode. Journal of Electroanalytical Chemistry, 1994, 371, 179-189.	3.8	8
34	Mechanistic Determination Using Arrays of Variable Sized Channel Microband Electrodes: The Oxidation of 2,3,7,8-Tetramethoxythianthrene in the Presence of Pyridine in Acetonitrile Solution. Electroanalysis, 1998, 10, 685-690.	2.9	8
35	Application of electrochemical impedance spectroscopy to the study of surface processes. Collection of Czechoslovak Chemical Communications, 2011, 76, 1825-1854.	1.0	8
36	Electric-Field-Driven Molecular Recognition Reactions of Guanine with 1,2-Dipalmitoyl- <i>sn</i> -(i>-glycero-3-cytidine Monolayers Deposited on Gold Electrodes. Langmuir, 2019, 35, 9297-9307.	3.5	8

#	Article	IF	CITATIONS
37	Impedance analysis of the reduction of pyrimidine at a dropping mercury electrode. Journal of Electroanalytical Chemistry, 1994, 366, 127-134.	3.8	7
38	Cholesterol Levels Affect the Performance of AuNPs-Decorated Thermo-Sensitive Liposomes as Nanocarriers for Controlled Doxorubicin Delivery. Pharmaceutics, 2021, 13, 973.	4.5	7
39	Didodecyldimethylammonium Bromide Role in Anchoring Gold Nanoparticles onto Liposome Surface for Triggering the Drug Release. AAPS PharmSciTech, 2019, 20, 294.	3.3	6
40	Adsorption of pyrimidine at the mercury aqueous solution interface. Journal of Electroanalytical Chemistry, 1994, 379, 467-478.	3.8	5
41	Heterogeneous ECE Processes at Channel Electrodes:Â Voltammetric Waveshape Theory. Application to the Reduction of Nitromethane at Platinum Electrodes. Journal of Physical Chemistry B, 1998, 102, 6573-6578.	2.6	5
42	Electrochemical impedance spectroscopy study of a surface confined redox reaction: The reduction of azobenzene on mercury in the absence of diffusion. Electrochimica Acta, 2011, 56, 7916-7922.	5.2	5
43	In situ surface enhanced infrared absorption spectroscopy study of the adsorption of cytosine on gold electrodes. Journal of Electroanalytical Chemistry, 2019, 849, 113362.	3.8	5
44	Spectroelectrochemical Characterization of 1,2-Dipalmitoyl- <i>sn</i> -glycero-3-cytidine Diphosphate Nucleolipid Monolayer Supported on Gold (111) Electrode. Langmuir, 2019, 35, 901-910.	3.5	5
45	Molecular recognition between guanine and cytosine-functionalized nucleolipid hybrid bilayers supported on gold (111) electrodes. Bioelectrochemistry, 2020, 132, 107416.	4.6	4
46	Salt and isotope effects upon a multistep electrode reaction: the reduction of nitromethane on mercury. Journal of Electroanalytical Chemistry, 1999, 474, 60-68.	3.8	3
47	Electrostatics affects formation of Watson-Crick complex between DNA bases in monolayers of nucleolipids deposited at a gold electrode surface. Electrochimica Acta, 2021, 390, 138816.	5.2	3
48	Mechanism of electrodimerization of pyrimidine on mercury from acid solutions. Journal of Electroanalytical Chemistry, 1995, 384, 123-130.	3.8	2
49	Mixed monolayer of a nucleolipid and a phospholipid has improved properties for spectroelectrochemical sensing of complementary nucleobases. Journal of Electroanalytical Chemistry, 2021, 896, 115120.	3.8	2
50	Application of the high-speed channel flow cell to reactive chemistry at solid surfaces. Journal of Solid State Electrochemistry, 1999, 3, 187-192.	2.5	1