Yiyan He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3146458/publications.pdf

Version: 2024-02-01

		361413	395702
34	1,435	20	33
papers	citations	h-index	g-index
36	36	36	2102
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Bioinspired design of mannose-decorated globular lysine dendrimers promotes diabetic wound healing by orchestrating appropriate macrophage polarization. Biomaterials, 2022, 280, 121323.	11.4	30
2	Multifunctional polysaccharide hydrogels for skin wound healing prepared by photoinitiator-free crosslinking. Carbohydrate Polymers, 2022, 285, 119254.	10.2	26
3	Preparation and Evaluation of Reduction-Controlled Hierarchical Unpacking Terplexes for Gene Delivery. Biomaterial Engineering, 2022, , 361-380.	0.2	O
4	Bioactive hydrogels based on polysaccharides and peptides for soft tissue wound management. Journal of Materials Chemistry B, 2022, 10, 7148-7160.	5 . 8	13
5	Gallium(III)-Mediated Dual-Cross-Linked Alginate Hydrogels with Antibacterial Properties for Promoting Infected Wound Healing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 22426-22442.	8.0	36
6	Biodegradable gemcitabine-loaded microdevice with sustained local drug delivery and improved tumor recurrence inhibition abilities for postoperative pancreatic tumor treatment. Drug Delivery, 2022, 29, 1595-1607.	5.7	7
7	A double-network polysaccharide-based composite hydrogel for skin wound healing. Carbohydrate Polymers, 2021, 261, 117870.	10.2	115
8	Bacterium-mimicking sequentially targeted therapeutic nanocomplexes based on O-carboxymethyl chitosan and their cooperative therapy by dual-modality light manipulation. Carbohydrate Polymers, 2021, 264, 118030.	10.2	6
9	Injectable Hydrogel Based on Modified Gelatin and Sodium Alginate for Soft-Tissue Adhesive. Frontiers in Chemistry, 2021, 9, 744099.	3.6	15
10	Fast and High Strength Soft Tissue Bioadhesives Based on a Peptide Dendrimer with Antimicrobial Properties and Hemostatic Ability. ACS Applied Materials & Interfaces, 2020, 12, 4241-4253.	8.0	63
11	Chemically Grafting Carbon Nanotubes onto Carbon Fibers for Enhancing Interfacial Properties of Fiber Metal Laminate. Materials, 2020, 13, 3813.	2.9	14
12	Injectable Adhesive Self-Healing Multicross-Linked Double-Network Hydrogel Facilitates Full-Thickness Skin Wound Healing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57782-57797.	8.0	154
13	Virus-Inspired Mimics: Dual-pH-Responsive Modular Nanoplatforms for Programmable Gene Delivery without DNA Damage with the Assistance of Light. ACS Applied Materials & Interfaces, 2020, 12, 22519-22533.	8.0	9
14	Tunable membrane-penetrating bioreductive nanogels based on guanidinylated dendrimers for programmable gene delivery. Applied Materials Today, 2020, 20, 100646.	4.3	9
15	An Oxygen Self-sufficient Fluorinated Nanoplatform for Relieved Tumor Hypoxia and Enhanced Photodynamic Therapy of Cancers. ACS Applied Materials & Samp; Interfaces, 2019, 11, 7731-7742.	8.0	69
16	Reactive Oxygen Species (ROS)-Degradable Polymeric Nanoplatform for Hypoxia-Targeted Gene Delivery: Unpacking DNA and Reducing Toxicity. Biomacromolecules, 2019, 20, 1899-1913.	5 . 4	24
17	Tailoring the Supramolecular Structure of Guanidinylated Pullulan toward Enhanced Genetic Photodynamic Therapy. Biomacromolecules, 2018, 19, 2214-2226.	5.4	19
18	Cyclodextrin-grafted poly(anhydride) nanoparticles for oral glibenclamide administration. In vivo evaluation using C. elegans. International Journal of Pharmaceutics, 2018, 547, 97-105.	5.2	20

#	Article	IF	CITATIONS
19	Tailoring the supramolecular structure of amphiphilic glycopolypeptide analogue toward liver targeted drug delivery systems. International Journal of Pharmaceutics, 2017, 525, 191-202.	5. 2	13
20	pHâ€Triggered Pinpointed Cascading Chargeâ€Conversion and Redoxâ€Controlled Gene Release Design: Modularized Fabrication for Nonviral Gene Transfection. Advanced Functional Materials, 2017, 27, 1701571.	14.9	57
21	Supramolecular PEGylated Dendritic Systems as pH/Redox Dual-Responsive Theranostic Nanoplatforms for Platinum Drug Delivery and NIR Imaging. Theranostics, 2016, 6, 1293-1305.	10.0	68
22	Specially-Made Lipid-Based Assemblies for Improving Transmembrane Gene Delivery: Comparison of Basic Amino Acid Residue Rich Periphery. Molecular Pharmaceutics, 2016, 13, 1809-1821.	4.6	34
23	Multiâ€Responsive "Turnâ€On―Nanocarriers for Efficient Siteâ€Specific Gene Delivery In Vitro and In Vivo. Advanced Healthcare Materials, 2016, 5, 2799-2812.	7.6	18
24	Highly Stable Fluorinated Nanocarriers with iRGD for Overcoming the Stability Dilemma and Enhancing Tumor Penetration in an Orthotopic Breast Cancer. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28468-28479.	8.0	34
25	Virusâ€Inspired Mimics Based on Dendritic Lipopeptides for Efficient Tumorâ€Specific Infection and Systemic Drug Delivery. Advanced Functional Materials, 2015, 25, 5250-5260.	14.9	74
26	Self-assembly of pH-sensitive fluorinated peptide dendron functionalized dextran nanoparticles for on-demand intracellular drug delivery. Journal of Materials Science: Materials in Medicine, 2015, 26, 219.	3.6	20
27	Insight into the efficient transfection activity of a designed low aggregated magnetic polyethyleneimine/DNA complex in serum-containing medium and the application in vivo. Biomaterials Science, 2015, 3, 446-456.	5.4	22
28	Viral Mimicking Ternary Polyplexes: A Reductionâ€Controlled Hierarchical Unpacking Vector for Gene Delivery. Advanced Materials, 2014, 26, 1534-1540.	21.0	119
29	Geneâ€Delivery Vectors: Viral Mimicking Ternary Polyplexes: A Reductionâ€Controlled Hierarchical Unpacking Vector for Gene Delivery (Adv. Mater. 10/2014). Advanced Materials, 2014, 26, 1632-1632.	21.0	5
30	Influence of reduction-sensitive diselenide bonds and disulfide bonds on oligoethylenimine conjugates for gene delivery. Journal of Materials Chemistry B, 2014, 2, 7210-7221.	5.8	53
31	p53 mediated apoptosis by reduction sensitive shielding ternary complexes based on disulfide linked PEI ternary complexes. Biomaterials, 2014, 35, 1657-1666.	11.4	28
32	Polyethyleneimine/DNA polyplexes with reduction-sensitive hyaluronic acid derivatives shielding for targeted gene delivery. Biomaterials, 2013, 34, 1235-1245.	11.4	198
33	Low aggregation magnetic polyethyleneimine complexes with different saturation magnetization for efficient gene transfection in vitro and in vivo. RSC Advances, 2013, 3, 23571.	3.6	14
34	Development of a reduction-sensitive diselenide-conjugated oligoethylenimine nanoparticulate system as a gene carrier. International Journal of Nanomedicine, 2012, 7, 3991.	6.7	49