Patricia Haro Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3146339/publications.pdf

Version: 2024-02-01

108 papers

5,084 citations

32 h-index 70 g-index

111 all docs

111 docs citations

times ranked

111

6746 citing authors

#	Article	IF	CITATIONS
1	Manipulation of up-conversion emission in NaYF ₄ core@shell nanoparticles doped by Er ³⁺ , Tm ³⁺ , or Yb ³⁺ ions by excitation wavelengthâ€"three ionsâ€"plenty of possibilities. Nanoscale, 2021, 13, 7322-7333.	5.6	31
2	Hyperspectral Imaging and Optical Trapping: Complementary Tools for Assessing Directionâ€Dependent Polarized Emission from Single Upconverting LiYF ₄ :Yb ³⁺ /Er ³⁺ Microparticles. Advanced Optical Materials, 2021, 9, 2100101.	7.3	19
3	Optical trapping at high temperature. , 2021, , .		O
4	Temperature Effects on Optical Trapping Stability. Micromachines, 2021, 12, 954.	2.9	13
5	Laser Refrigeration by an Ytterbiumâ€Doped NaYF ₄ Microspinner. Small, 2021, 17, e2103122.	10.0	7
6	Nanojet Trapping of a Single Subâ€10Ânm Upconverting Nanoparticle in the Full Liquid Water Temperature Range. Small, 2021, 17, e2006764.	10.0	20
7	pH dependence of water anomaly temperature investigated by Eu(III) cryptate luminescence. Analytical and Bioanalytical Chemistry, 2020, 412, 73-80.	3.7	9
8	Exploring Single-Nanoparticle Dynamics at High Temperature by Optical Tweezers. Nano Letters, 2020, 20, 8024-8031.	9.1	22
9	Optical Manipulation of Lanthanide-Doped Nanoparticles: How to Overcome Their Limitations. Frontiers in Chemistry, 2020, 8, 593398.	3.6	4
10	Bifunctional Tm3+,Yb3+:GdVO4@SiO2 Core-Shell Nanoparticles in HeLa Cells: Upconversion Luminescence Nanothermometry in the First Biological Window and Biolabelling in the Visible. Nanomaterials, 2020, 10, 993.	4.1	27
11	Eu3+ luminescent ions detect water density anomaly. Journal of Luminescence, 2020, 223, 117263.	3.1	2
12	Femtosecond Laser Writing of Optical Waveguides by Self-Induced Multiple Refocusing in LiTaO ₃ Crystal. Journal of Lightwave Technology, 2019, 37, 3452-3458.	4.6	18
13	Singleâ€Cell Biodetection by Upconverting Microspinners. Small, 2019, 15, e1904154.	10.0	22
14	Luminescence and cathodoluminescence properties of MIPr(PO3)4 (MI=Na, Li, K) and PrP5O14. Physica B: Condensed Matter, 2019, 554, 121-125.	2.7	3
15	Fluorescence intensity ratio and lifetime thermometry of praseodymium phosphates for temperature sensing. Journal of Luminescence, 2018, 201, 372-383.	3.1	63
16	Optical temperature sensing of Er 3+ /Yb 3+ doped LaGdO 3 based on fluorescence intensity ratio and lifetime thermometry. Optical Materials, 2018, 76, 34-41.	3.6	62
17	Lightâ€Activated Upconverting Spinners. Advanced Optical Materials, 2018, 6, 1800161.	7.3	13
18	Upconverting Nanoparticle to Quantum Dot FÃ \P rster Resonance Energy Transfer: Increasing the Efficiency through Donor Design. ACS Photonics, 2018, 5, 2261-2270.	6.6	63

#	Article	IF	CITATIONS
19	Luminescent nanothermometry using short-wavelength infrared light. Journal of Alloys and Compounds, 2018, 746, 710-719.	5 . 5	30
20	Optical Forces at the Nanoscale: Size and Electrostatic Effects. Nano Letters, 2018, 18, 602-609.	9.1	35
21	Upconverting nanocomposites with combined photothermal and photodynamic effects. Nanoscale, 2018, 10, 791-799.	5.6	61
22	Reliability of rare-earth-doped infrared luminescent nanothermometers. Nanoscale, 2018, 10, 22319-22328.	5.6	124
23	Upconverting materials for boosting the development of advanced optical microrheometric techniques. Optical Materials, 2018, 84, 514-523.	3.6	4
24	Core–shell rare-earth-doped nanostructures in biomedicine. Nanoscale, 2018, 10, 12935-12956.	5.6	63
25	Effect of H2O and D2O Thermal Anomalies on the Luminescence of Eu3+ Aqueous Complexes. Journal of Physical Chemistry C, 2018, 122, 14838-14845.	3.1	13
26	Plug and Play Anisotropy-Based Nanothermometers. ACS Photonics, 2018, 5, 2676-2681.	6.6	8
27	Plasmonic Enhancement in the Fluorescence of Organic and Biological Molecules by Photovoltaic Tweezing Assembly. Advanced Materials Technologies, 2017, 2, 1700024.	5.8	14
28	Unveiling Molecular Changes in Water by Small Luminescent Nanoparticles. Small, 2017, 13, 1700968.	10.0	20
29	Core–Shell Engineering to Enhance the Spectral Stability of Heterogeneous Luminescent Nanofluids. Particle and Particle Systems Characterization, 2017, 34, 1700276.	2.3	9
30	Optical trapping for biosensing: materials and applications. Journal of Materials Chemistry B, 2017, 5, 9085-9101.	5.8	48
31	X-ray nanoimaging of Nd^3+ optically active ions embedded in Sr_05Ba_05Nb_2O_6 nanocrystals. Optical Materials Express, 2017, 7, 2424.	3.0	4
32	Avoiding induced heating in optical trap. , 2017, , .		2
33	Microrheometric upconversion-based techniques for intracellular viscosity measurements., 2017,,.		1
34	La2O3: Tm, Yb, Er upconverting nano-oxides for sub-tissue lifetime thermal sensing. Sensors and Actuators B: Chemical, 2016, 234, 541-548.	7.8	46
35	Luminescence thermometry and imaging in the second biological window at high penetration depth with Nd:KGd(WO ₄) ₂ nanoparticles. Journal of Materials Chemistry C, 2016, 4, 7397-7405.	5.5	59
36	Optical Torques on Upconverting Particles for Intracellular Microrheometry. Nano Letters, 2016, 16, 8005-8014.	9.1	70

#	Article	IF	CITATIONS
37	Thermal Scanning at the Cellular Level by an Optically Trapped Upconverting Fluorescent Particle. Advanced Materials, 2016, 28, 2421-2426.	21.0	128
38	New strategies invonving upconverting nanoparticles for determining moderate temperatures by luminescence thermometry. Journal of Luminescence, 2016, 169, 711-716.	3.1	22
39	Determining the 3D orientation of optically trapped upconverting nanorods by <i>in situ</i> single-particle polarized spectroscopy. Nanoscale, 2016, 8, 300-308.	5.6	52
40	Effect of ytterbium substitution on LaEr ($1\hat{a}^{-1}x$) Yb x O 3 optical properties. Journal of Luminescence, 2016, 172, 65-70.	3.1	7
41	Effects of the preparation processes on structural, electronic, and optical properties of LaHoO 3. Materials Research Bulletin, 2016, 76, 179-186.	5.2	4
42	Assessing Single Upconverting Nanoparticle Luminescence by Optical Tweezers. Nano Letters, 2015, 15, 5068-5074.	9.1	56
43	Intratumoral Thermal Reading During Photoâ€Thermal Therapy by Multifunctional Fluorescent Nanoparticles. Advanced Functional Materials, 2015, 25, 615-626.	14.9	274
44	Enhancing Optical Forces on Fluorescent Upâ€Converting Nanoparticles by Surface Charge Tailoring. Small, 2015, 11, 1555-1561.	10.0	21
45	$1.3~\hat{l}^{1}\!\!/\!4$ m emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Research, 2015, 8, 649-665.	10.4	185
46	Gold nanorod assisted intracellular optical manipulation of silica microspheres. Optics Express, 2014, 22, 19735.	3.4	7
47	Strong ion migration in high refractive index contrast waveguides formed by femtosecond laser pulses in phosphate glass. , 2014, , .		2
48	Femtosecond-laser inscription via local modification of the glass composition in phosphate glasses. , 2014, , .		0
49	New strategies for luminescence thermometry in the biological range using upconverting nanoparticles. , $2014, , .$		2
50	Quantum Dot Thermometry Evaluation of Geometry Dependent Heating Efficiency in Gold Nanoparticles. Langmuir, 2014, 30, 1650-1658.	3.5	85
51	Er:Yb:NaY ₂ F ₅ O up-converting nanoparticles for sub-tissue fluorescence lifetime thermal sensing. Nanoscale, 2014, 6, 9727.	5.6	131
52	Nanoparticles for photothermal therapies. Nanoscale, 2014, 6, 9494-9530.	5.6	1,562
53	Analysis of the upconversion processes of Nd3+ ions in transparent YAG ceramics. Ceramics International, 2014, 40, 15951-15956.	4.8	13
54	Fluorescent nanothermometers for intracellular thermal sensing. Nanomedicine, 2014, 9, 1047-1062.	3.3	117

#	Article	IF	CITATIONS
55	Energy transfer processes in Eu3+ doped nanocrystalline La2TeO6 phosphor. Journal of Luminescence, 2014, 145, 553-556.	3.1	10
56	Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows. Nanoscale, 2013, 5, 7882.	5.6	106
57	Eu3+ as a luminescent probe for the local structure of trivalent dopant ions in barium zirconate-based proton conductors. Solid State Ionics, 2013, 247-248, 94-97.	2.7	16
58	Water (H $<$ sub $>$ 2 $<$ /sub $>$ 0 and D $<$ sub $>$ 2 $<$ /sub $>$ 0) Dispersible NIR-to-NIR Upconverting Yb $<$ sup $>$ 3+ $<$ /sup $>$ /Tm $<$ sup $>$ 3+ $<$ /sup $>$ Doped MF $<$ sub $>$ 2 $<$ /sub $>$ (M = Ca, Sr) Colloids: Influence of the Host Crystal. Crystal Growth and Design, 2013, 13, 4906-4913.	3.0	93
59	Heat in optical tweezers. Proceedings of SPIE, 2013, , .	0.8	5
60	Optical trapping of NaYF4:Er3+,Yb3+ upconverting fluorescent nanoparticles. Nanoscale, 2013, 5, 12192.	5.6	66
61	Nanocrystal formation using laser irradiation on Nd3+ doped barium titanium silicate glasses. Journal of Alloys and Compounds, 2013, 553, 35-39.	5 . 5	6
62	Fluorescent nanothermometers provide controlled plasmonic-mediated intracellular hyperthermia. Nanomedicine, 2013, 8, 379-388.	3.3	49
63	Quantum Dotâ€Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells. Small, 2013, 9, 2162-2170.	10.0	67
64	Upconversion emission obtained in Yb^3+-Er^3+ doped fluoroindate glasses using silica microspheres as focusing lens. Optics Express, 2013, 21, 10667.	3.4	15
65	Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass. Optics Letters, 2013, 38, 5248.	3.3	61
66	Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors. Sensors and Actuators B: Chemical, 2012, 174, 176-186.	7.8	168
67	Evaluation of rare earth doped silica sub-micrometric spheres as optically controlled temperature sensors. Journal of Applied Physics, 2012, 112, 054702.	2.5	23
68	Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry. Applied Physics Letters, 2012, 100, 201110.	3.3	38
69	Highâ€Sensitivity Fluorescence Lifetime Thermal Sensing Based on CdTe Quantum Dots. Small, 2012, 8, 2652-2658.	10.0	130
70	Upconverting Ho–Yb doped titanate nanotubes. Materials Letters, 2012, 80, 81-83.	2.6	15
71	Optical study of the effect of the impurity content on the ferroelectric properties of Er3+ doped SBN glass-ceramic samples. Journal of Applied Physics, 2011, 110, .	2.5	7
72	Whispering gallery modes in a glass microsphere as a function of temperature. Optics Express, 2011, 19, 25792.	3.4	39

#	Article	IF	CITATIONS
73	Whispering-gallery modes in glass microspheres: optimization of pumping in a modified confocal microscope. Optics Letters, 2011, 36, 615.	3.3	26
74	Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor. Materials Research Bulletin, 2011, 46, 1051-1054.	5.2	90
75	Optical gain by upconversion in Tm–Yb oxyfluoride glass ceramic. Applied Physics B: Lasers and Optics, 2011, 104, 237-240.	2.2	1
76	Optical amplification properties of Dy3+-doped Gd2SiO4, Lu2SiO5 and YAl3(BO3)4 single crystals. Applied Physics B: Lasers and Optics, 2011, 103, 597-602.	2.2	12
77	Optical properties of transparent Dy3+ doped Ba2TiSi2O8 glass ceramic. Optical Materials, 2011, 33, 738-741.	3.6	16
78	Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors. Optical Materials, 2011, 33, 742-745.	3.6	104
79	Nanocrystals formation on Ho3+ doped strontium barium niobate glass. Journal of Luminescence, 2011, 131, 657-661.	3.1	3
80	Synthesis, characterization and optical spectroscopy of Eu3+ doped titanate nanotubes. Journal of Luminescence, 2011, 131, 2473-2477.	3.1	19
81	Transfer and backtransfer processes in Yb3+–Er3+ codoped Strontium Barium Niobate glass-ceramics. Journal of Luminescence, 2011, 131, 2446-2450.	3.1	9
82	Stimulated emission in the red, green, and blue in a nanostructured glass ceramics. Journal of Applied Physics, 2011, 109, 043102-043102-6.	2.5	9
83	Structural changes induced on strontium barium niobate glass byÂfemtosecond laser irradiation. Applied Physics A: Materials Science and Processing, 2010, 98, 879-884.	2.3	4
84	Analysis of the optical properties of Er3+-doped strontium barium niobate nanocrystals using time-resolved laser spectroscopy. Applied Physics A: Materials Science and Processing, 2010, 99, 771-776.	2.3	3
85	Second harmonic generation in Er3+–Yb3+:YBO3. Materials Letters, 2010, 64, 650-653.	2.6	3
86	Crystallization effect on Tm3+–Yb3+ codoped SBN glass ceramics. Optical Materials, 2010, 32, 1385-1388.	3.6	4
87	Optical amplification by upconversion in Tm–Yb fluoroindate glass. Optical Materials, 2010, 32, 1349-1351.	3.6	9
88	Local devitrification of Dy3+ doped Ba2TiSi2O8 glass by laser irradiation. Optical Materials, 2010, 33, 186-190.	3.6	19
89	Optical gain in Er3+-doped transparent LuVO4 crystal at 850nm. Optical Materials, 2010, 32, 475-478.	3.6	8
90	Formation of Nd3+ doped Strontium Barium Niobate nanocrystals by two different methods. Optical Materials, 2010, 32, 1389-1392.	3.6	3

#	Article	IF	CITATIONS
91	Control of the local devitrification on oxyfluoride glass doped with Er3+ ions under diode laser irradiation. Journal of Applied Physics, 2010, 108, 103103.	2.5	1
92	Pump and probe measurements of optical amplification at 584nm in dysprosium doped lithium niobate crystal. Optical Materials, 2010, 33, 196-199.	3.6	15
93	Nanocrystals distribution inside the writing lines in a glass matrix using Argon laser irradiation. Optics Express, 2010, 18, 582.	3.4	10
94	Optical amplification in Er3+-doped transparent Ba2NaNb5O15 single crystal at 850 nm. Journal of Applied Physics, 2009, 106, 113108.	2.5	8
95	Optical amplification in Er3+-doped fluoroindate glass at 840nm and 1550nm. Optical Materials, 2009, 31, 1370-1372.	3.6	6
96	Local devitrification on an oxyfluoride glass doped with Ho3+ ions under Argon laser irradiation. Optical Materials, 2009, 31, 1373-1375.	3.6	8
97	Growth of Nanocrystals in a Nd ³⁺ –Yb ³⁺ Codoped Oxyfluoride Glass by Laser Irradiation. Journal of Nanoscience and Nanotechnology, 2009, 9, 3771-3774.	0.9	1
98	Upconversion emission in Er3+-doped lead niobium germanate thin-film glasses produced by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2008, 93, 621-625.	2.3	6
99	Localized desvitrifiation in Er3+-doped strontium barium niobate glass by laser irradiation. Applied Physics A: Materials Science and Processing, 2008, 93, 977-981.	2.3	6
100	Local crystallization in an oxyfluoride glass doped with Er3+ ions using a continuous argon laser. Applied Physics A: Materials Science and Processing, 2008, 93, 983-986.	2.3	4
101	Desvitrification on an oxyfluoride glass doped with Tm3+ and Yb3+ ions under Ar laser irradiation. Journal of Luminescence, 2008, 128, 905-907.	3.1	9
102	Increase of the blue upconversion emission in YAG:Tm3+ nanopowders by codoping with Yb3+ ions. Journal of Luminescence, 2008, 128, 924-926.	3.1	14
103	Effects of Er3+ and Yb3+ doping on structural and non-linear optical properties of LiNaSO4. Journal of Luminescence, 2008, 128, 1025-1028.	3.1	2
104	Optical properties of Er3+-doped strontium barium niobate nanocrystals obtained by thermal treatment in glass. Journal of Luminescence, 2008, 128, 908-910.	3.1	28
105	Laser irradiation in Nd3+ doped strontium barium niobate glass. Journal of Applied Physics, 2008, 104, 013112.	2.5	13
106	Effects of Er3+and Yb3+doping on non-linear properties of double lithium sulfates. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C468-C468.	0.3	0
107	New experimental results to clarify the sequence of phases of LiNH4SO4. Acta Crystallographica Section A: Foundations and Advances, 2007, 63, s223-s224.	0.3	0
108	Down-conversion properties of luminescent silicon nanostructures formed and passivated in HNO3-based solutions. Thin Solid Films, 2006, 511-512, 473-477.	1.8	17