## Patricia Haro Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3146339/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nanoparticles for photothermal therapies. Nanoscale, 2014, 6, 9494-9530.                                                                                                                                                                               | 5.6  | 1,562     |
| 2  | Intratumoral Thermal Reading During Photoâ€Thermal Therapy by Multifunctional Fluorescent<br>Nanoparticles. Advanced Functional Materials, 2015, 25, 615-626.                                                                                          | 14.9 | 274       |
| 3  | 1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Research, 2015, 8, 649-665.                                                                                                            | 10.4 | 185       |
| 4  | Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors. Sensors and Actuators B: Chemical, 2012, 174, 176-186.                                                                                         | 7.8  | 168       |
| 5  | Er:Yb:NaY <sub>2</sub> F <sub>5</sub> O up-converting nanoparticles for sub-tissue fluorescence lifetime thermal sensing. Nanoscale, 2014, 6, 9727.                                                                                                    | 5.6  | 131       |
| 6  | High‣ensitivity Fluorescence Lifetime Thermal Sensing Based on CdTe Quantum Dots. Small, 2012, 8,<br>2652-2658.                                                                                                                                        | 10.0 | 130       |
| 7  | Thermal Scanning at the Cellular Level by an Optically Trapped Upconverting Fluorescent Particle.<br>Advanced Materials, 2016, 28, 2421-2426.                                                                                                          | 21.0 | 128       |
| 8  | Reliability of rare-earth-doped infrared luminescent nanothermometers. Nanoscale, 2018, 10, 22319-22328.                                                                                                                                               | 5.6  | 124       |
| 9  | Fluorescent nanothermometers for intracellular thermal sensing. Nanomedicine, 2014, 9, 1047-1062.                                                                                                                                                      | 3.3  | 117       |
| 10 | Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows.<br>Nanoscale, 2013, 5, 7882.                                                                                                                           | 5.6  | 106       |
| 11 | Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors. Optical Materials, 2011, 33, 742-745.                                                                                                           | 3.6  | 104       |
| 12 | Water (H <sub>2</sub> O and D <sub>2</sub> O) Dispersible NIR-to-NIR Upconverting<br>Yb <sup>3+</sup> /Tm <sup>3+</sup> Doped MF <sub>2</sub> (M = Ca, Sr) Colloids: Influence of the Host<br>Crystal. Crystal Growth and Design, 2013, 13, 4906-4913. | 3.0  | 93        |
| 13 | Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor. Materials<br>Research Bulletin, 2011, 46, 1051-1054.                                                                                                          | 5.2  | 90        |
| 14 | Quantum Dot Thermometry Evaluation of Geometry Dependent Heating Efficiency in Gold<br>Nanoparticles. Langmuir, 2014, 30, 1650-1658.                                                                                                                   | 3.5  | 85        |
| 15 | Optical Torques on Upconverting Particles for Intracellular Microrheometry. Nano Letters, 2016, 16, 8005-8014.                                                                                                                                         | 9.1  | 70        |
| 16 | Quantum Dotâ€Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single<br>Cells. Small, 2013, 9, 2162-2170.                                                                                                                  | 10.0 | 67        |
| 17 | Optical trapping of NaYF4:Er3+,Yb3+ upconverting fluorescent nanoparticles. Nanoscale, 2013, 5, 12192.                                                                                                                                                 | 5.6  | 66        |
| 18 | Fluorescence intensity ratio and lifetime thermometry of praseodymium phosphates for temperature sensing. Journal of Luminescence, 2018, 201, 372-383.                                                                                                 | 3.1  | 63        |

PATRICIA HARO GONZALEZ

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Upconverting Nanoparticle to Quantum Dot Förster Resonance Energy Transfer: Increasing the<br>Efficiency through Donor Design. ACS Photonics, 2018, 5, 2261-2270.                                                                                               | 6.6 | 63        |
| 20 | Core–shell rare-earth-doped nanostructures in biomedicine. Nanoscale, 2018, 10, 12935-12956.                                                                                                                                                                    | 5.6 | 63        |
| 21 | Optical temperature sensing of Er 3+ /Yb 3+ doped LaGdO 3 based on fluorescence intensity ratio and lifetime thermometry. Optical Materials, 2018, 76, 34-41.                                                                                                   | 3.6 | 62        |
| 22 | lon migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass. Optics Letters, 2013, 38, 5248.                                                                                                 | 3.3 | 61        |
| 23 | Upconverting nanocomposites with combined photothermal and photodynamic effects. Nanoscale, 2018, 10, 791-799.                                                                                                                                                  | 5.6 | 61        |
| 24 | Luminescence thermometry and imaging in the second biological window at high penetration depth<br>with Nd:KGd(WO <sub>4</sub> ) <sub>2</sub> nanoparticles. Journal of Materials Chemistry C, 2016, 4,<br>7397-7405.                                            | 5.5 | 59        |
| 25 | Assessing Single Upconverting Nanoparticle Luminescence by Optical Tweezers. Nano Letters, 2015, 15, 5068-5074.                                                                                                                                                 | 9.1 | 56        |
| 26 | Determining the 3D orientation of optically trapped upconverting nanorods by <i>in situ</i> single-particle polarized spectroscopy. Nanoscale, 2016, 8, 300-308.                                                                                                | 5.6 | 52        |
| 27 | Fluorescent nanothermometers provide controlled plasmonic-mediated intracellular hyperthermia.<br>Nanomedicine, 2013, 8, 379-388.                                                                                                                               | 3.3 | 49        |
| 28 | Optical trapping for biosensing: materials and applications. Journal of Materials Chemistry B, 2017, 5, 9085-9101.                                                                                                                                              | 5.8 | 48        |
| 29 | La2O3: Tm, Yb, Er upconverting nano-oxides for sub-tissue lifetime thermal sensing. Sensors and Actuators B: Chemical, 2016, 234, 541-548.                                                                                                                      | 7.8 | 46        |
| 30 | Whispering gallery modes in a glass microsphere as a function of temperature. Optics Express, 2011, 19, 25792.                                                                                                                                                  | 3.4 | 39        |
| 31 | Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry.<br>Applied Physics Letters, 2012, 100, 201110.                                                                                                                       | 3.3 | 38        |
| 32 | Optical Forces at the Nanoscale: Size and Electrostatic Effects. Nano Letters, 2018, 18, 602-609.                                                                                                                                                               | 9.1 | 35        |
| 33 | Manipulation of up-conversion emission in NaYF <sub>4</sub> core@shell nanoparticles doped by<br>Er <sup>3+</sup> , Tm <sup>3+</sup> , or Yb <sup>3+</sup> ions by excitation wavelength—three<br>ions—plenty of possibilities. Nanoscale, 2021, 13, 7322-7333. | 5.6 | 31        |
| 34 | Luminescent nanothermometry using short-wavelength infrared light. Journal of Alloys and Compounds, 2018, 746, 710-719.                                                                                                                                         | 5.5 | 30        |
| 35 | Optical properties of Er3+-doped strontium barium niobate nanocrystals obtained by thermal treatment in glass. Journal of Luminescence, 2008, 128, 908-910.                                                                                                     | 3.1 | 28        |
| 36 | Bifunctional Tm3+,Yb3+:GdVO4@SiO2 Core-Shell Nanoparticles in HeLa Cells: Upconversion<br>Luminescence Nanothermometry in the First Biological Window and Biolabelling in the Visible.<br>Nanomaterials. 2020, 10, 993.                                         | 4.1 | 27        |

| #  | Article                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Whispering-gallery modes in glass microspheres: optimization of pumping in a modified confocal microscope. Optics Letters, 2011, 36, 615.                                                                                                                                | 3.3  | 26        |
| 38 | Evaluation of rare earth doped silica sub-micrometric spheres as optically controlled temperature sensors. Journal of Applied Physics, 2012, 112, 054702.                                                                                                                | 2.5  | 23        |
| 39 | New strategies invonving upconverting nanoparticles for determining moderate temperatures by luminescence thermometry. Journal of Luminescence, 2016, 169, 711-716.                                                                                                      | 3.1  | 22        |
| 40 | Single ell Biodetection by Upconverting Microspinners. Small, 2019, 15, e1904154.                                                                                                                                                                                        | 10.0 | 22        |
| 41 | Exploring Single-Nanoparticle Dynamics at High Temperature by Optical Tweezers. Nano Letters, 2020, 20, 8024-8031.                                                                                                                                                       | 9.1  | 22        |
| 42 | Enhancing Optical Forces on Fluorescent Up onverting Nanoparticles by Surface Charge Tailoring.<br>Small, 2015, 11, 1555-1561.                                                                                                                                           | 10.0 | 21        |
| 43 | Unveiling Molecular Changes in Water by Small Luminescent Nanoparticles. Small, 2017, 13, 1700968.                                                                                                                                                                       | 10.0 | 20        |
| 44 | Nanojet Trapping of a Single Subâ€10Ânm Upconverting Nanoparticle in the Full Liquid Water Temperature<br>Range. Small, 2021, 17, e2006764.                                                                                                                              | 10.0 | 20        |
| 45 | Local devitrification of Dy3+ doped Ba2TiSi2O8 glass by laser irradiation. Optical Materials, 2010, 33, 186-190.                                                                                                                                                         | 3.6  | 19        |
| 46 | Synthesis, characterization and optical spectroscopy of Eu3+ doped titanate nanotubes. Journal of Luminescence, 2011, 131, 2473-2477.                                                                                                                                    | 3.1  | 19        |
| 47 | Hyperspectral Imaging and Optical Trapping: Complementary Tools for Assessing Directionâ€Dependent<br>Polarized Emission from Single Upconverting LiYF <sub>4</sub> :Yb <sup>3+</sup> /Er <sup>3+</sup><br>Microparticles. Advanced Optical Materials, 2021, 9, 2100101. | 7.3  | 19        |
| 48 | Femtosecond Laser Writing of Optical Waveguides by Self-Induced Multiple Refocusing in<br>LiTaO <sub>3</sub> Crystal. Journal of Lightwave Technology, 2019, 37, 3452-3458.                                                                                              | 4.6  | 18        |
| 49 | Down-conversion properties of luminescent silicon nanostructures formed and passivated in HNO3-based solutions. Thin Solid Films, 2006, 511-512, 473-477.                                                                                                                | 1.8  | 17        |
| 50 | Optical properties of transparent Dy3+ doped Ba2TiSi2O8 glass ceramic. Optical Materials, 2011, 33,<br>738-741.                                                                                                                                                          | 3.6  | 16        |
| 51 | Eu3+ as a luminescent probe for the local structure of trivalent dopant ions in barium zirconate-based proton conductors. Solid State Ionics, 2013, 247-248, 94-97.                                                                                                      | 2.7  | 16        |
| 52 | Pump and probe measurements of optical amplification at 584nm in dysprosium doped lithium niobate<br>crystal. Optical Materials, 2010, 33, 196-199.                                                                                                                      | 3.6  | 15        |
| 53 | Upconverting Ho–Yb doped titanate nanotubes. Materials Letters, 2012, 80, 81-83.                                                                                                                                                                                         | 2.6  | 15        |
| 54 | Upconversion emission obtained in Yb^3+-Er^3+ doped fluoroindate glasses using silica microspheres as focusing lens. Optics Express, 2013, 21, 10667.                                                                                                                    | 3.4  | 15        |

PATRICIA HARO GONZALEZ

| #  | Article                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Increase of the blue upconversion emission in YAG:Tm3+ nanopowders by codoping with Yb3+ ions.<br>Journal of Luminescence, 2008, 128, 924-926.                          | 3.1 | 14        |
| 56 | Plasmonic Enhancement in the Fluorescence of Organic and Biological Molecules by Photovoltaic<br>Tweezing Assembly. Advanced Materials Technologies, 2017, 2, 1700024.  | 5.8 | 14        |
| 57 | Laser irradiation in Nd3+ doped strontium barium niobate glass. Journal of Applied Physics, 2008, 104, 013112.                                                          | 2.5 | 13        |
| 58 | Analysis of the upconversion processes of Nd3+ ions in transparent YAG ceramics. Ceramics<br>International, 2014, 40, 15951-15956.                                      | 4.8 | 13        |
| 59 | Lightâ€Activated Upconverting Spinners. Advanced Optical Materials, 2018, 6, 1800161.                                                                                   | 7.3 | 13        |
| 60 | Effect of H2O and D2O Thermal Anomalies on the Luminescence of Eu3+ Aqueous Complexes. Journal of Physical Chemistry C, 2018, 122, 14838-14845.                         | 3.1 | 13        |
| 61 | Temperature Effects on Optical Trapping Stability. Micromachines, 2021, 12, 954.                                                                                        | 2.9 | 13        |
| 62 | Optical amplification properties of Dy3+-doped Gd2SiO4, Lu2SiO5 and YAl3(BO3)4 single crystals.<br>Applied Physics B: Lasers and Optics, 2011, 103, 597-602.            | 2.2 | 12        |
| 63 | Nanocrystals distribution inside the writing lines in a glass matrix using Argon laser irradiation.<br>Optics Express, 2010, 18, 582.                                   | 3.4 | 10        |
| 64 | Energy transfer processes in Eu3+ doped nanocrystalline La2TeO6 phosphor. Journal of Luminescence,<br>2014, 145, 553-556.                                               | 3.1 | 10        |
| 65 | Desvitrification on an oxyfluoride glass doped with Tm3+ and Yb3+ ions under Ar laser irradiation.<br>Journal of Luminescence, 2008, 128, 905-907.                      | 3.1 | 9         |
| 66 | Optical amplification by upconversion in Tm–Yb fluoroindate glass. Optical Materials, 2010, 32,<br>1349-1351.                                                           | 3.6 | 9         |
| 67 | Transfer and backtransfer processes in Yb3+–Er3+ codoped Strontium Barium Niobate glass-ceramics.<br>Journal of Luminescence, 2011, 131, 2446-2450.                     | 3.1 | 9         |
| 68 | Stimulated emission in the red, green, and blue in a nanostructured glass ceramics. Journal of Applied Physics, 2011, 109, 043102-043102-6.                             | 2.5 | 9         |
| 69 | Core–Shell Engineering to Enhance the Spectral Stability of Heterogeneous Luminescent Nanofluids.<br>Particle and Particle Systems Characterization, 2017, 34, 1700276. | 2.3 | 9         |
| 70 | pH dependence of water anomaly temperature investigated by Eu(III) cryptate luminescence. Analytical<br>and Bioanalytical Chemistry, 2020, 412, 73-80.                  | 3.7 | 9         |
| 71 | Optical amplification in Er3+-doped transparent Ba2NaNb5O15 single crystal at 850 nm. Journal of<br>Applied Physics, 2009, 106, 113108.                                 | 2.5 | 8         |
| 72 | Local devitrification on an oxyfluoride glass doped with Ho3+ ions under Argon laser irradiation.<br>Optical Materials, 2009, 31, 1373-1375.                            | 3.6 | 8         |

PATRICIA HARO GONZALEZ

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Optical gain in Er3+-doped transparent LuVO4 crystal at 850nm. Optical Materials, 2010, 32, 475-478.                                                                                      | 3.6  | 8         |
| 74 | Plug and Play Anisotropy-Based Nanothermometers. ACS Photonics, 2018, 5, 2676-2681.                                                                                                       | 6.6  | 8         |
| 75 | Optical study of the effect of the impurity content on the ferroelectric properties of Er3+ doped SBN glass-ceramic samples. Journal of Applied Physics, 2011, 110, .                     | 2.5  | 7         |
| 76 | Gold nanorod assisted intracellular optical manipulation of silica microspheres. Optics Express, 2014, 22, 19735.                                                                         | 3.4  | 7         |
| 77 | Effect of ytterbium substitution on LaEr (1â^x) Yb x O 3 optical properties. Journal of Luminescence, 2016, 172, 65-70.                                                                   | 3.1  | 7         |
| 78 | Laser Refrigeration by an Ytterbiumâ€Đoped NaYF <sub>4</sub> Microspinner. Small, 2021, 17, e2103122.                                                                                     | 10.0 | 7         |
| 79 | Upconversion emission in Er3+-doped lead niobium germanate thin-film glasses produced by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2008, 93, 621-625. | 2.3  | 6         |
| 80 | Localized desvitrifiation in Er3+-doped strontium barium niobate glass by laser irradiation. Applied Physics A: Materials Science and Processing, 2008, 93, 977-981.                      | 2.3  | 6         |
| 81 | Optical amplification in Er3+-doped fluoroindate glass at 840nm and 1550nm. Optical Materials, 2009, 31, 1370-1372.                                                                       | 3.6  | 6         |
| 82 | Nanocrystal formation using laser irradiation on Nd3+ doped barium titanium silicate glasses. Journal of Alloys and Compounds, 2013, 553, 35-39.                                          | 5.5  | 6         |
| 83 | Heat in optical tweezers. Proceedings of SPIE, 2013, , .                                                                                                                                  | 0.8  | 5         |
| 84 | Local crystallization in an oxyfluoride glass doped with Er3+ ions using a continuous argon laser.<br>Applied Physics A: Materials Science and Processing, 2008, 93, 983-986.             | 2.3  | 4         |
| 85 | Structural changes induced on strontium barium niobate glass byÂfemtosecond laser irradiation.<br>Applied Physics A: Materials Science and Processing, 2010, 98, 879-884.                 | 2.3  | 4         |
| 86 | Crystallization effect on Tm3+–Yb3+ codoped SBN glass ceramics. Optical Materials, 2010, 32, 1385-1388.                                                                                   | 3.6  | 4         |
| 87 | Effects of the preparation processes on structural, electronic, and optical properties of LaHoO 3.<br>Materials Research Bulletin, 2016, 76, 179-186.                                     | 5.2  | 4         |
| 88 | X-ray nanoimaging of Nd^3+ optically active ions embedded in Sr_05Ba_05Nb_20_6 nanocrystals.<br>Optical Materials Express, 2017, 7, 2424.                                                 | 3.0  | 4         |
| 89 | Upconverting materials for boosting the development of advanced optical microrheometric techniques. Optical Materials, 2018, 84, 514-523.                                                 | 3.6  | 4         |
| 90 | Optical Manipulation of Lanthanide-Doped Nanoparticles: How to Overcome Their Limitations.<br>Frontiers in Chemistry, 2020, 8, 593398.                                                    | 3.6  | 4         |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Analysis of the optical properties of Er3+-doped strontium barium niobate nanocrystals using<br>time-resolved laser spectroscopy. Applied Physics A: Materials Science and Processing, 2010, 99, 771-776. | 2.3 | 3         |
| 92  | Second harmonic generation in Er3+–Yb3+:YBO3. Materials Letters, 2010, 64, 650-653.                                                                                                                       | 2.6 | 3         |
| 93  | Formation of Nd3+ doped Strontium Barium Niobate nanocrystals by two different methods. Optical<br>Materials, 2010, 32, 1389-1392.                                                                        | 3.6 | 3         |
| 94  | Nanocrystals formation on Ho3+ doped strontium barium niobate glass. Journal of Luminescence, 2011, 131, 657-661.                                                                                         | 3.1 | 3         |
| 95  | Luminescence and cathodoluminescence properties of MIPr(PO3)4 (MI=Na, Li, K) and PrP5O14. Physica B:<br>Condensed Matter, 2019, 554, 121-125.                                                             | 2.7 | 3         |
| 96  | Effects of Er3+ and Yb3+ doping on structural and non-linear optical properties of LiNaSO4. Journal of Luminescence, 2008, 128, 1025-1028.                                                                | 3.1 | 2         |
| 97  | Strong ion migration in high refractive index contrast waveguides formed by femtosecond laser pulses in phosphate glass. , 2014, , .                                                                      |     | 2         |
| 98  | New strategies for luminescence thermometry in the biological range using upconverting nanoparticles. , 2014, , .                                                                                         |     | 2         |
| 99  | Eu3+ luminescent ions detect water density anomaly. Journal of Luminescence, 2020, 223, 117263.                                                                                                           | 3.1 | 2         |
| 100 | Avoiding induced heating in optical trap. , 2017, , .                                                                                                                                                     |     | 2         |
| 101 | Growth of Nanocrystals in a Nd <sup>3+</sup> –Yb <sup>3+</sup> Codoped<br>Oxyfluoride Glass by Laser Irradiation. Journal of Nanoscience and Nanotechnology, 2009, 9, 3771-3774.                          | 0.9 | 1         |
| 102 | Control of the local devitrification on oxyfluoride glass doped with Er3+ ions under diode laser irradiation. Journal of Applied Physics, 2010, 108, 103103.                                              | 2.5 | 1         |
| 103 | Optical gain by upconversion in Tm–Yb oxyfluoride glass ceramic. Applied Physics B: Lasers and Optics, 2011, 104, 237-240.                                                                                | 2.2 | 1         |
| 104 | Microrheometric upconversion-based techniques for intracellular viscosity measurements. , 2017, , .                                                                                                       |     | 1         |
| 105 | Femtosecond-laser inscription via local modification of the glass composition in phosphate glasses. , 2014, , .                                                                                           |     | Ο         |
| 106 | Optical trapping at high temperature. , 2021, , .                                                                                                                                                         |     | 0         |
| 107 | New experimental results to clarify the sequence of phases of LiNH4SO4. Acta Crystallographica Section A: Foundations and Advances, 2007, 63, s223-s224.                                                  | 0.3 | 0         |
| 108 | Effects of Er3+and Yb3+doping on non-linear properties of double lithium sulfates. Acta<br>Crystallographica Section A: Foundations and Advances, 2008, 64, C468-C468.                                    | 0.3 | 0         |