Mazen Alshaaer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/314545/publications.pdf

Version: 2024-02-01

623734 501196 32 818 14 28 citations g-index h-index papers 35 35 35 837 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Composition and technological properties of geopolymers based on metakaolin and red mud. Materials & Design, 2013, 52, 648-654.	5.1	146
2	Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers. International Journal of Mineral Processing, 2015, 137, 34-42.	2.6	119
3	The influence of using Jordanian natural zeolite on the adsorption, physical, and mechanical properties of geopolymers products. Journal of Hazardous Materials, 2009, 165, 379-387.	12.4	92
4	Fabrication, microstructural and mechanical characterization of Luffa Cylindrical Fibre - Reinforced geopolymer composite. Applied Clay Science, 2017, 143, 125-133.	5.2	63
5	Two-phase geopolymerization of kaolinite-based geopolymers. Applied Clay Science, 2013, 86, 162-168.	5.2	36
6	Production of monetite-based Inorganic Phosphate Cement (M-IPC) using hydrothermal post curing (HTPC). Cement and Concrete Research, 2011, 41, 30-37.	11.0	35
7	Adsorption of Cu(II), Ni(II), Zn(II), Cd(II) and Pb(II) onto Kaolin/Zeolite Based-Geopolymers. Advances in Materials Physics and Chemistry, 2012, 02, 119-125.	0.7	35
8	Microstructural characteristics and adsorption potential of a zeolitic tuff–metakaolin geopolymer. Desalination and Water Treatment, 2015, 56, 338-345.	1.0	34
9	Evaluation of a low temperature hardening Inorganic Phosphate Cement for high-temperature applications. Cement and Concrete Research, 2011, 41, 38-45.	11.0	33
10	Synthesis and characterization of self-healing geopolymer composite. Construction and Building Materials, 2020, 245, 118432.	7.2	21
11	Alkali solid-state conversion of kaolin and zeolite to effective adsorbents for removal of lead from aqueous solution. Desalination and Water Treatment, 2009, 8, 124-130.	1.0	20
12	Biomass fly ash and biomass bottom ash. , 2019, , 23-58.		20
13	Degree of reactivity of two kaolinitic minerals in alkali solution using zeolitic tuff or silica sand filler. Ceramics International, 2012, 38, 5061-5067.	4.8	18
14	Development of functional geopolymers for water purification, and construction purposes. Journal of Saudi Chemical Society, 2016, 20, S85-S92.	5.2	18
15	Fabrication of porous bioceramics for bone tissue applications using luffa cylindrical fibres (LCF) as template. Processing and Application of Ceramics, 2017, 11, 13-20.	0.8	17
16	Synthesis of Geopolymers Using Local Resources for Construction and Water Purification. Journal of Water Resource and Protection, 2014, 06, 507-513.	0.8	12
17	Polyimide Surface Modification Using He-H2O Atmospheric Pressure Plasma Jet-Discharge Power Effect. Coatings, 2020, 10, 662.	2.6	11
18	Physicochemical and Microstructural Characterization of Injectable Load-Bearing Calcium Phosphate Scaffold. Advances in Materials Science and Engineering, 2013, 2013, 1-8.	1.8	10

#	Article	IF	CITATIONS
19	The effect of natural fibres template on the chemical and structural properties of Biphasic Calcium Phosphate scaffold. Materials Research Express, 2020, 7, 065405.	1.6	10
20	Effects of the full-scale substitution of strontium for calcium on the microstructure of brushite: (CaxSr1â€"x)HPO4.nH2O system. Clay Minerals, 2020, 55, 366-374.	0.6	9
21	Advantages of Applying a Steam Curing Cycle for the Production of Kaolinite-Based Geopolymers. Arabian Journal for Science and Engineering, 2014, 39, 7591-7597.	1.1	8
22	Microstructural characteristics and longâ€term stability of wollastoniteâ€based chemically bonded phosphate ceramics. International Journal of Applied Ceramic Technology, 2021, 18, 319-331.	2.1	8
23	Synthesis, Characterization, and Recyclability of a Functional Jute-Based Geopolymer Composite. Frontiers in Built Environment, 2021, 7, .	2.3	7
24	Use of Local Raw Materials for Construction Purposes. Advances in Science and Technology, 0, , .	0.2	6
25	Gradual Replacement of Ca2+ with Mg2+ lons in Brushite for the Production of Ca1â^'xMgxHPO4·nH2O Materials. Minerals (Basel, Switzerland), 2021, 11, 284.	2.0	5
26	Effect of Ca2+ Replacement with Cu2+ Ions in Brushite on the Phase Composition and Crystal Structure. Minerals (Basel, Switzerland), 2021, 11, 1028.	2.0	4
27	Effects of magnetite incorporation in a chemically bonded phosphate ceramic. Journal of Physics and Chemistry of Solids, 2022, 162, 110531.	4.0	3
28	The Impact of Full-Scale Substitution of Ca2+ with Ni2+ Ions on Brushite's Crystal Structure and Phase Composition. Crystals, 2022, 12, 940.	2.2	3
29	Synthesis and Characterization of Date Palm Fiber-Reinforced Geopolymer Composite. Arabian Journal for Science and Engineering, 2022, 47, 12323-12332.	3.0	2
30	Brushite: Synthesis, Properties, and Biomedical Applications. , 0, , .		1
31	Introductory Chapter: Case Studies of Functional Geopolymers. , 0, , .		0
32	Stiffened Sandwich Beam Using Glass Fiber Reinforced Inorganic Phosphate Cement (IPC). Greener Journal of Science Engineering and Technological Research, 2014, 4, 009-016.	0.2	0