Xavier Belles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3145352/publications.pdf Version: 2024-02-01

XAVIED RELIES

#	Article	IF	CITATIONS
1	Beyond <i>Drosophila:</i> RNAi In Vivo and Functional Genomics in Insects. Annual Review of Entomology, 2010, 55, 111-128.	5.7	382
2	THE MEVALONATE PATHWAY AND THE SYNTHESIS OF JUVENILE HORMONE IN INSECTS. Annual Review of Entomology, 2005, 50, 181-199.	5.7	334
3	Hemimetabolous genomes reveal molecular basis of termite eusociality. Nature Ecology and Evolution, 2018, 2, 557-566.	3.4	223
4	Molecular basis of juvenile hormone signaling. Current Opinion in Insect Science, 2015, 11, 39-46.	2.2	193
5	The MEKRE93 (Methoprene tolerant-Krüppel homolog 1-E93) pathway in the regulation of insect metamorphosis, and the homology of the pupal stage. Insect Biochemistry and Molecular Biology, 2014, 52, 60-68.	1.2	178
6	Persistence of double-stranded RNA in insect hemolymph as a potential determiner of RNA interference success: Evidence from Manduca sexta and Blattella germanica. Journal of Insect Physiology, 2013, 59, 171-178.	0.9	168
7	The vitellogenin of the honey bee, Apis mellifera: structural analysis of the cDNA and expression studies. Insect Biochemistry and Molecular Biology, 2003, 33, 459-465.	1.2	167
8	Conserved repressive function of Krüppel homolog 1 on insect metamorphosis in hemimetabolous and holometabolous species. Scientific Reports, 2011, 1, 163.	1.6	157
9	Vitellogenin expression in queen ovaries and in larvae of both sexes ofApis mellifera. Archives of Insect Biochemistry and Physiology, 2005, 59, 211-218.	0.6	125
10	Systemic RNAi of the cockroach vitellogenin receptor results in a phenotype similar to that of the Drosophila yolkless mutant. FEBS Journal, 2006, 273, 325-335.	2.2	121
11	MiR-2 family regulates insect metamorphosis by controlling the juvenile hormone signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3740-3745.	3.3	110
12	MicroRNAs and the Evolution of Insect Metamorphosis. Annual Review of Entomology, 2017, 62, 111-125.	5.7	106
13	Functions of the ecdysone receptor isoform-A in the hemimetabolous insect Blattella germanica revealed by systemic RNAi in vivo. Developmental Biology, 2006, 297, 158-171.	0.9	105
14	Allatostatic neuropeptides from the cockroach Blattella germanica (L.) (Dictyoptera, Blattellidae). Identification, immunolocalization and activity. Regulatory Peptides, 1994, 53, 237-247.	1.9	104
15	Ecdysone signalling and ovarian development in insects: from stem cells to ovarian follicle formation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 181-186.	0.9	101
16	RNAi studies reveal a conserved role for RXR in molting in the cockroach Blattella germanica. Journal of Insect Physiology, 2006, 52, 410-416.	0.9	98
17	Insect antifeedant activity of clerodane diterpenoids against larvae ofSpodoptera Littoralis (Boisd.) (Lepidoptera). Journal of Chemical Ecology, 1985, 11, 1439-1445.	0.9	95
18	Screening of antifeedant activity in brain extracts led to the identification of sulfakinin as a satiety promoter in the German cockroach FEBS Journal, 2001, 268, 5824-5830.	0.2	95

#	Article	IF	CITATIONS
19	Deep Sequencing of Organ- and Stage-Specific microRNAs in the Evolutionarily Basal Insect Blattella germanica (L.) (Dictyoptera, Blattellidae). PLoS ONE, 2011, 6, e19350.	1.1	94
20	Target of Rapamycin (TOR) Mediates the Transduction of Nutritional Signals into Juvenile Hormone Production. Journal of Biological Chemistry, 2009, 284, 5506-5513.	1.6	91
21	MicroRNA-dependent metamorphosis in hemimetabolan insects. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21678-21682.	3.3	90
22	Evolution on a shaky piece of Gondwana: is local endemism recent in New Caledonia?. Cladistics, 2005, 21, 2-7.	1.5	86
23	Broad-complex functions in postembryonic development of the cockroach Blattella germanica shed new light on the evolution of insect metamorphosis. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2178-2187.	1.1	81
24	Key roles of the Broad-Complex gene in insect embryogenesis. Insect Biochemistry and Molecular Biology, 2010, 40, 468-475.	1.2	79
25	An experimental test of the role of environmental temperature variability on ectotherm molecular, physiological and life-history traits: Implications for global warming. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2011, 159, 242-246.	0.8	79
26	The molecular evolution of the allatostatin precursor in cockroaches. Peptides, 1999, 20, 11-22.	1.2	78
27	Inhibition of vitellogenin production by allatostatin in the German cockroach. Molecular and Cellular Endocrinology, 1996, 121, 191-196.	1.6	75
28	Differential expression of two RXR/ultraspiracle isoforms during the life cycle of the hemimetabolous insect Blattella germanica (Dictyoptera, Blattellidae). Molecular and Cellular Endocrinology, 2005, 238, 27-37.	1.6	74
29	Quantity does matter. Juvenile hormone and the onset of vitellogenesis in the German cockroach. Insect Biochemistry and Molecular Biology, 2003, 33, 1219-1225.	1.2	70
30	The nuclear hormone receptor BgE75 links molting and developmental progression in the direct-developing insect Blattella germanica. Developmental Biology, 2008, 315, 147-160.	0.9	69
31	Oral delivery of <scp>dsRNA</scp> lipoplexes to German cockroach protects <scp>dsRNA</scp> from degradation and induces <scp>RNAi</scp> response. Pest Management Science, 2017, 73, 960-966.	1.7	69
32	Nuclear receptor BgFTZâ€F1 regulates molting and the timing of ecdysteroid production during nymphal development in the hemimetabolous insect <i>Blattella germanica</i> . Developmental Dynamics, 2008, 237, 3179-3191.	0.8	68
33	Subtle roles of microRNAs let-7, miR-100 and miR-125 on wing morphogenesis in hemimetabolan metamorphosis. Journal of Insect Physiology, 2013, 59, 1089-1094.	0.9	67
34	In vitro biosynthesis of JH III by the corpora allata of adult females of Blattella germanica (L). Insect Biochemistry, 1987, 17, 1007-1010.	1.8	66
35	Insect glycerol transporters evolved by functional co-option and gene replacement. Nature Communications, 2015, 6, 7814.	5.8	66
36	Juvenile Hormone Titer Versus Juvenile Hormone Synthesis in Female Nymphs and Adults of the German Cockroach, <i>Blattella germanica</i> . Journal of Insect Science, 2006, 6, 1-7.	0.6	61

#	Article	IF	CITATIONS
37	Hemimetabolous insects elucidate the origin of sexual development via alternative splicing. ELife, 2019, 8, .	2.8	61
38	The evolutionary transition from subsocial to eusocial behaviour in Dictyoptera: Phylogenetic evidence for modification of the "shift-in-dependent-care―hypothesis with a new subsocial cockroach. Molecular Phylogenetics and Evolution, 2007, 43, 616-626.	1.2	59
39	Induction of vitellogenin gene transcription in vitro by juvenile hormone in Blattella germanica. Molecular and Cellular Endocrinology, 2001, 183, 93-100.	1.6	56
40	Allatostatin gene expression in brain and midgut, and activity of synthetic allatostatins on feeding-related processes in the cockroach Blattella germanica. Regulatory Peptides, 2003, 115, 171-177.	1.9	56
41	RNAi of ace1 and ace2 in Blattella germanica reveals their differential contribution to acetylcholinesterase activity and sensitivity to insecticides. Insect Biochemistry and Molecular Biology, 2009, 39, 913-919.	1.2	56
42	A Role for Taiman in Insect Metamorphosis. PLoS Genetics, 2014, 10, e1004769.	1.5	56
43	Fast induction of vitellogenin gene expression by juvenile hormone III in the cockroach Blattella germanica (L.) (Dictyoptera, Blattellidae). Insect Biochemistry and Molecular Biology, 1999, 29, 821-827.	1.2	55
44	Role of Methoprene-Tolerant (Met) in Adult Morphogenesis and in Adult Ecdysis of Blattella germanica. PLoS ONE, 2014, 9, e103614.	1.1	54
45	Redundant ecdysis regulatory functions of three nuclear receptor HR3 isoforms in the direct-developing insect Blattella germanica. Mechanisms of Development, 2007, 124, 180-189.	1.7	53
46	Different Blaâ€g T cell antigens dominate responses in asthma versus rhinitis subjects. Clinical and Experimental Allergy, 2015, 45, 1856-1867.	1.4	53
47	Structural and RNAi characterization of the German cockroach lipophorin receptor, and the evolutionary relationships of lipoprotein receptors. BMC Molecular Biology, 2007, 8, 53.	3.0	52
48	MicroRNAs in metamorphic and non-metamorphic transitions in hemimetabolan insect metamorphosis. BMC Genomics, 2012, 13, 386.	1.2	51
49	The hormonal pathway controlling cell death during metamorphosis in a hemimetabolous insect. Developmental Biology, 2010, 346, 150-160.	0.9	50
50	The cockroach <i>Blattella germanica</i> obtains nitrogen from uric acid through a metabolic pathway shared with its bacterial endosymbiont. Biology Letters, 2014, 10, 20140407.	1.0	50
51	Orcokinins in insects and other invertebrates. Insect Biochemistry and Molecular Biology, 2004, 34, 1141-1146.	1.2	48
52	Identifying genes related to choriogenesis in insect panoistic ovaries by Suppression Subtractive Hybridization. BMC Genomics, 2009, 10, 206.	1.2	47
53	Conservation of fruitless' role as master regulator of male courtship behaviour from cockroaches to flies. Development Genes and Evolution, 2011, 221, 43-48.	0.4	46
54	Localization of allatostatin-immunoreactive material in the central nervous system, stomatogastric nervous system, and gut of the cockroachBlattella germanica. , 1998, 37, 269-282.		43

#	Article	IF	CITATIONS
55	Patterns of haemolymph vitellogenin and ovarian vitellin in the German cockroach, and the role of Juvenile Hormone. Physiological Entomology, 1995, 20, 59-65.	0.6	41
56	Molecular cloning, developmental pattern and tissue expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase of the cockroach Blattella germanica. FEBS Journal, 1993, 213, 233-241.	0.2	40
57	Quantification of Ecdysteroids by Immunoassay: Comparison of Enzyme Immunoassay and Radioimmunoassay. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1995, 50, 862-867.	0.6	40
58	The microRNA toolkit of insects. Scientific Reports, 2016, 6, 37736.	1.6	40
59	Ovarian ecdysteroid levels and basal oöcyte development during maturation in the cockroach Blattella germanica (L.). Journal of Insect Physiology, 1992, 38, 339-348.	0.9	37
60	Modulation of cardiac rhythm by allatostatins in the cockroach Blattella germanica (L.) (Dictyoptera,) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
61	Identification of leucomyosuppressin in the German cockroach, Blattella germanica, as an inhibitor of food intake. Regulatory Peptides, 2004, 119, 105-112.	1.9	37
62	Feeding and activation of corpora allata in the cockroach Blattella germanica (L.) (Dictyoptera,) Tj ETQq0 0 0 rgB	T /Oyerlocl	10 Tf 50 46
63	Tergal and pleural structures contribute to the formation of ectopic prothoracic wings in cockroaches. Royal Society Open Science, 2016, 3, 160347.	1.1	34
64	The innovation of the final moult and the origin of insect metamorphosis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180415.	1.8	34
65	Krüppel homolog 1 and E93: The doorkeeper and the key to insect metamorphosis. Archives of Insect Biochemistry and Physiology, 2020, 103, e21609.	0.6	34
66	DIPA-CRISPR is a simple and accessible method for insect gene editing. Cell Reports Methods, 2022, 2, 100215.	1.4	34
67	3-Hydroxy-3-methylglutaryl-coenzyme-A synthase from Blattella germanica. Cloning, expression, developmental pattern and tissue expression. FEBS Journal, 1993, 217, 691-699.	0.2	32
68	Super-induction of Dicer-2 expression by alien double-stranded RNAs: an evolutionary ancient response to viral infection?. Development Genes and Evolution, 2012, 222, 229-235.	0.4	32
69	Juvenile hormone and hemimetabolan eusociality: a comparison of cockroaches with termites. Current Opinion in Insect Science, 2017, 22, 109-116.	2.2	32
70	Comparative Transcriptomics in Two Extreme Neopterans Reveals General Trends in the Evolution of Modern Insects. IScience, 2018, 4, 164-179.	1.9	32
71	Mitochondrial targeting of farnesyl diphosphate synthase is a widespread phenomenon in eukaryotes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 419-426.	1.9	30
72	Comparative analysis of miRNA expression during the development of insects of different metamorphosis modes and germ-band types. BMC Genomics, 2017, 18, 774.	1.2	30

#	Article	IF	CITATIONS
73	Induction of choriogenesis by 20-hydroxyecdysone in the german cockroach. Tissue and Cell, 1993, 25, 195-204.	1.0	29
74	Isolation and sequence of a partial vitellogenin cDNA from the cockroach,Blattella germanica (L.) (Dictyoptera, Blattellidae), and characterization of the vitellogenin gene expression. , 1998, 38, 137-146.		29
75	What does Cryptocercus kyebangensis, n.sp. (Dictyoptera: Blattaria: Polyphagidae) from Korea reveal about Cryptocercus evolution? A study in morphology, molecular phylogeny, and chemistry of tergal glands. Proceedings of the Academy of Natural Sciences of Philadelphia, 2001, 151, 61-79.	1.3	29
76	Molecular characterization of an inhibitor of apoptosis in the Egyptian armyworm, Spodoptera littoralis, and midgut cell death during metamorphosis. Insect Biochemistry and Molecular Biology, 2007, 37, 1241-1248.	1.2	28
77	Identification and functional characterization of an ovarian aquaporin from the cockroach <i>Blattella germanica</i> L. (Dictyoptera, Blattellidae). Journal of Experimental Biology, 2011, 214, 3630-3638.	0.8	28
78	Juvenile Hormone inhibition in corpora allata from ovariectomized Blattella germanica. Physiological Entomology, 1994, 19, 342-348.	0.6	27
79	CREB-binding protein contributes to the regulation of endocrine and developmental pathways in insect hemimetabolan pre-metamorphosis. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 508-515.	1.1	27
80	Silencing allatostatin expression using double-stranded RNA targeted to preproallatostatin mRNA in the German cockroach. Archives of Insect Biochemistry and Physiology, 2006, 62, 73-79.	0.6	26
81	Juvenile hormone and allatostatins in the German cockroach embryo. Insect Biochemistry and Molecular Biology, 2010, 40, 660-665.	1.2	26
82	Phylogenetic relationships of Dalyat mirabilis Mateu, 2002, with a revised molecular phylogeny of ground beetles (Coleoptera, Carabidae). Journal of Zoological Systematics and Evolutionary Research, 2005, 43, 284-296.	0.6	25
83	Orcokinins contribute to the regulation of vitellogenin transcription in the cockroach Blattella germanica. Journal of Insect Physiology, 2015, 82, 129-133.	0.9	25
84	Juvenile hormone production and accessory reproductive gland development during sexual maturation of male Blattella germanica (L.) (Dictyoptera, Blattellidae). Comparative Biochemistry and Physiology A, Comparative Physiology, 1992, 102, 477-480.	0.7	24
85	Nuclear receptor HR4 plays an essential role in the ecdysteroid-triggered gene cascade in the development of the hemimetabolous insect Blattella germanica. Molecular and Cellular Endocrinology, 2012, 348, 322-330.	1.6	24
86	Juvenile hormone biosynthesis in adult Blattella germanica requires nuclear receptors Seven-up and FTZ-F1. Scientific Reports, 2017, 7, 40234.	1.6	24
87	Juvenile hormone signaling in short germ-band hemimetabolan embryos. Development (Cambridge), 2017, 144, 4637-4644.	1.2	24
88	Myoglianin triggers the premetamorphosis stage in hemimetabolan insects. FASEB Journal, 2019, 33, 3659-3669.	0.2	23
89	Antifeedant activity of dihydro-β-agarofuran sesquiterpenes from Celastraceae against Spodoptera littoralis. Biochemical Systematics and Ecology, 1992, 20, 311-315.	0.6	22
90	Coordinated expression and activity of 3-hydroxy-3-methylglutaryl coenzyme a synthase and reductase in the fat body of Blattella germanica (L.) during vitellogenesis. Insect Biochemistry and Molecular Biology, 1996, 26, 837-843.	1.2	22

#	Article	IF	CITATIONS
91	Insect MicroRNAs. , 2012, , 30-56.		22
92	Initial field trials with the synthetic sex pheromone of the processionary mothThaumetopoea pityocampa (Denis and Schiff.). Journal of Chemical Ecology, 1983, 9, 85-93.	0.9	21
93	Functional Characterization of Hypertrehalosemic Hormone Receptor in Relation to Hemolymph Trehalose and to Oxidative Stress in the Cockroach Blattella germanica. Frontiers in Endocrinology, 2011, 2, 114.	1.5	21
94	Ultrastructural changes induced by precocene II and 3,4-dihydroprecocene II in the corpora allata of Blattella germanica. Cell and Tissue Research, 1989, 258, 91.	1.5	20
95	Ketomethylene and Methyleneamino Pseudopeptide Analogues of Insect Allatostatins Inhibit Juvenile Hormone and Vitellogenin Production in the Cockroach Blattella germanica. Insect Biochemistry and Molecular Biology, 1997, 27, 851-858.	1.2	20
96	Vitellogenin ofBlattella germanica (l.) (Dictyoptera, Blattellidae): Nucleotide sequence of the cDNA and analysis of the protein primary structure. Archives of Insect Biochemistry and Physiology, 2000, 45, 1-11.	0.6	19
97	Molecular cloning and structural analysis of 3-hydroxy-3-methylglutaryl coenzyme A reductase of the moth Agrotis ipsilon. Insect Molecular Biology, 2000, 9, 385-392.	1.0	19
98	Effects of myoinhibitory peptides on food intake in the German cockroach. Physiological Entomology, 2006, 31, 257-261.	0.6	19
99	Antifeeding properties of myosuppressin in a generalist phytophagous leafworm, Spodoptera littoralis (Boisduval). Regulatory Peptides, 2008, 148, 68-75.	1.9	19
100	Brownie, a Gene Involved in Building Complex Respiratory Devices in Insect Eggshells. PLoS ONE, 2009, 4, e8353.	1.1	19
101	Ecdysteroid depletion by azadirachtin in Tenebrio molitor pupae. Pesticide Biochemistry and Physiology, 1990, 38, 60-65.	1.6	18
102	Inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase lower fecundity in the German cockroach: correlation between the effects on fecundityin vivowith the inhibition of enzymatic activity in embryo cells. Pest Management Science, 2003, 59, 1111-1117.	1.7	18
103	Biogeographic origin and thermal acclimation interact to determine survival and hsp90 expression in Drosophila species submitted to thermal stress. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2012, 162, 391-396.	0.8	18
104	Conserved association of Argonaute 1 and 2 proteins with miRNA and siRNA pathways throughout insect evolution, from cockroaches to flies. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 554-560.	0.9	18
105	Remodeling of the juvenile hormone pathway through casteâ€biased gene expression and positive selection along a gradient of termite eusociality. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2018, 330, 296-304.	0.6	17
106	Production and extraovarian processing of vitellogenin in ovariectomized Blattella germanica (L.) (Dictyoptera, Blattellidae). Journal of Insect Physiology, 1996, 42, 101-105.	0.9	16
107	Effects of hypocholesterolaemic agents on the expression and activity of 3-hydroxy-3-methylglutaryl-CoA reductase in the fat body of the German cockroach. Archives of Insect Biochemistry and Physiology, 2002, 49, 177-186.	0.6	16
108	The cDNA for leucomyosuppressin in Blattella germanica and molecular evolution of insect myosuppressins. Peptides, 2004, 25, 1883-1889.	1.2	16

#	Article	IF	CITATIONS
109	Endocrine peptides and insect reproduction. Invertebrate Reproduction and Development, 2005, 47, 23-37.	0.3	16
110	DNMT1 Promotes Genome Methylation and Early Embryo Development in Cockroaches. IScience, 2020, 23, 101778.	1.9	16
111	Production of vitellogenin <i>in vitro</i> by the periovaric fat body of <i>Blattella germanica</i> (L.) (Dictyoptera, Blattellidae). Invertebrate Reproduction and Development, 1995, 28, 171-176.	0.3	15
112	Regulation of atrophin by both strands of the mir-8 precursor. Insect Biochemistry and Molecular Biology, 2013, 43, 1009-1014.	1.2	15
113	Smads and insect hemimetabolan metamorphosis. Developmental Biology, 2016, 417, 104-113.	0.9	15
114	Expansions of key protein families in the German cockroach highlight the molecular basis of its remarkable success as a global indoor pest. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2018, 330, 254-264.	0.6	15
115	Identification and geographical distribution of Gibbium aequinoctiale Boieldieu and Gibbium psylloides (Czenpinski) (Coleoptera: Ptinidae). Journal of Stored Products Research, 1985, 21, 151-155.	1.2	14
116	Determination of allatostatin levels in relation to the gonadotropic cycle in the female of Blattella germanica (L.) (Dictyoptera, Blattellidae). Physiological Entomology, 1999, 24, 213-219.	0.6	14
117	Identification of a tachykinin-related peptide with orexigenic properties in the German cockroach. Peptides, 2008, 29, 386-392.	1.2	14
118	Expression and activity of 3-hydroxy-3-methylglutaryl-CoA synthase and reductase in the fat body of ovariectomized and allatectomized Blattella germanica. Physiological Entomology, 1997, 22, 6-12.	0.6	12
119	Molecular adaptation and resilience of the insect's nuclear receptor USP. BMC Evolutionary Biology, 2012, 12, 199.	3.2	12
120	Gastrin-cholecystokinin-like and neuroparsin-like immunoreactivities in the brain and retrocerebral neuroendocrine complex of the cockroach Blattella germanica. Histochemistry, 1990, 93, 433-438.	1.9	11
121	Chorion formation in panoistic ovaries requires windei and trimethylation of histone 3 lysine 9. Experimental Cell Research, 2014, 320, 46-53.	1.2	11
122	Practical Use of RNA Interference: Oral Delivery of Double-stranded RNA in Liposome Carriers for Cockroaches. Journal of Visualized Experiments, 2018, , .	0.2	11
123	In vitro inhibition of juvenile hormone III biosynthesis by precocene II and 3,4-dihydroprecocene II on Blattella germanica. Journal of Insect Physiology, 1988, 34, 457-461.	0.9	10
124	In vivo and in vitro effects of compactin in liposome carriers on juvenile hormone biosynthesis in adult females of Blattella germanica. Pesticide Biochemistry and Physiology, 1988, 32, 1-10.	1.6	10
125	Azadirachtin induced imaginal moult deficiencies in Tenebrio molitor L. (Coleoptera: Tenebrionidae). Journal of Stored Products Research, 1990, 26, 53-57.	1.2	10
126	Allatostatin Inhibits Vitellogenin Release in a Cockroacha. Annals of the New York Academy of Sciences, 1998, 839, 341-342.	1.8	10

#	Article	IF	CITATIONS
127	E93-depleted adult insects preserve the prothoracic gland and molt again. Development (Cambridge), 2020, 147, .	1.2	10

A microdialysis study of allatostatin degradation in Blattella germanica (L.) (Dictyoptera,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 Td (

129	Leucomyosuppressin modulates cardiac rhythm in the cockroach Blattella germanica. Journal of Insect Physiology, 2011, 57, 1677-1681.	0.9	9
130	Towards understanding the molecular basis of cockroach tergal gland morphogenesis. A transcriptomic approach. Insect Biochemistry and Molecular Biology, 2015, 63, 104-112.	1.2	8
131	Diversity of piRNA expression patterns during the ontogeny of the German cockroach. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2018, 330, 288-295.	0.6	8
132	Tergal and pleural wingâ€related tissues in the German cockroach and their implication to the evolutionary origin of insect wings. Evolution & Development, 2021, 23, 100-116.	1.1	8
133	Regulation of metamorphosis in neopteran insects is conserved in the paleopteran <i>Cloeon dipterum</i> (Ephemeroptera). Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
134	3-Hydroxy-3-methylglutaryl coenzyme A synthase-1 of Blattella germanica has structural and functional features of an active retrogene. Insect Biochemistry and Molecular Biology, 2001, 31, 425-433.	1.2	7
135	Zelda and the maternalâ€ŧoâ€₽ygotic transition in cockroaches. FEBS Journal, 2019, 286, 3206-3221.	2.2	7
136	Stimulating action of methyl 12, 12, 12-trifluorofarnesoate on in vitro juvenile hormone III biosynthesis in blattella germanica. Archives of Insect Biochemistry and Physiology, 1989, 11, 257-270.	0.6	6
137	Ovarian 3-hydroxy-3-methylglutaryl-CoA reductase in Blattella germanica (L.): pattern of expression and critical role in embryogenesis. Journal of Insect Physiology, 2002, 48, 675-681.	0.9	6
138	Modulation by somatostatin of juvenile hormone release in a cockroach. Die Naturwissenschaften, 1988, 75, 413-415.	0.6	5
139	Interactions Between Corpora Allata, Fat Body and Ovary in Insect Reproduction: Which Controls Which?. Animal Biology, 1994, 45, 152-156.	0.4	5
140	Inhibition of juvenile hormone during the formation of the spermatophore inBlattella germanica (L.) (dictyoptera, blattellidae). , 1996, 32, 559-566.		5
141	The conglobate gland of <i>Blattella germanica</i> (L.) (Dictyoptera, Blattellidae). Maturation, juvenile hormone dependency and changes during spermatophore formation. Invertebrate Reproduction and Development, 1996, 29, 167-172.	0.3	5
142	Broad complex and wing development in cockroaches. Insect Biochemistry and Molecular Biology, 2022, 147, 103798.	1.2	5
143	Stimulatory activity of cysteamine on juvenile hormone release in adult females of the cockroach, Blattella germanica. Comparative Biochemistry and Physiology A, Comparative Physiology, 1989, 94, 795-798.	0.7	4
144	Synergistic action of diethyl maleate on the morphogenetic and antigonadotropic activity of	0.6	9

#	Article	IF	CITATIONS
145	On the role of Juvenile Hormone in vitellogenesis in cockroaches. A reply to Holbrook et al. Physiological Entomology (2000) 25, 27-34. Juvenile Hormone is essential to induce vitellogenesis in the German cockroach, also in Barcelona Physiological Entomology, 2000, 25, 207-208.	0.6	3
146	16thInternational Ecdysone Workshop: July 10–14, 2006, Ghent University, Belgium. Journal of Insect Science, 2007, 7, 1-57.	0.6	3
147	When inordinate tissue growth is beneficial: Improving silk production by increasing silk gland size. Cell Research, 2011, 21, 862-863.	5.7	3
148	Identification and functional characterization of an ovarian aquaporin from the cockroach Blattella germanica L. (Dictyoptera, Blattellidae). Journal of Experimental Biology, 2011, 214, 3895-3895.	0.8	3
149	A new species of Dignomus Wollaston (Coleoptera: Ptinidae) from Eocene Baltic amber. Zootaxa, 2018, 4486, 195-200.	0.2	3
150	Molting: the basis for growing and for changing the form. , 2020, , 199-215.		3
151	Optimization of insect juvenile hormone bioassays on Tribolium confusum (DuV.) (Coleoptera:) Tj ETQq1 1 0.784 Research, 1982, 18, 21-25.	4314 rgB7 1.2	Г /Overlock 2
152	Age-dependent neurosecretion release induced by dopamine in the corpora cardiaca of Blattella germanica (L.) (Dictyoptera : Blattellidae). Arthropod Structure and Development, 1993, 22, 1-11.	0.4	1
153	Autoinhibition of juvenile hormone production. The case of the cockroachBlattella germanica (L.). Experientia, 1993, 49, 320-323.	1.2	1
154	A synopsis of the spider beetles (Coleoptera: Ptinidae) of Socotra, with the description of a new genus and two new species. Zoology in the Middle East, 2021, 67, 133-143.	0.2	1
155	 amp;it;i&gt;Dightoptinus&it;/i&gt;, a new genus for fossil &it;i&gt;Dightomus regiomontanus&lt;/i&gt; Alekseev from Eocene Baltic amber, and new status for &lt;i&gt;Bruchoptinus&lt;/i&gt; Reitter and &lt;i&gt;Pseudoptinus&lt;/i&gt; Reitter (Coleoptera: Ptinidae). Fossil Record, 2019, 22, 	0.5	1
156	The evolution of metamorphosis. , 2020, , 251-272.		1
157	The sex of scents. Nature Ecology and Evolution, 2022, 6, 1058-1059.	3.4	1
158	Ecdysone workshop at age twenty. Archives of Insect Biochemistry and Physiology, 1997, 35, 1-2.	0.6	0
159	Recognition of Bla g T Cell Antigens Varies As a Function of Allergic Asthma Versus Rhinitis. Journal of Allergy and Clinical Immunology, 2016, 137, AB271.	1.5	0
160	Hormones involved in the regulation of metamorphosis. , 2020, , 105-130.		0
161	Regulation of ametabolan, hemimetabolan, and holometabolan development. , 2020, , 217-240.		0

#	Article	IF	CITATIONS
163	Epigenetic-related mechanisms. , 2020, , 177-197.		0
164	Molecular mechanisms regulating hormone production and action. , 2020, , 131-176.		0
165	The hemimetabolan development. , 2020, , 47-69.		0