List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3145341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of ferrofluid magnetization on transformer temperature rise. Journal Physics D: Applied Physics, 2022, 55, 345002.	2.8	8
2	The dielectric breakdown strength of transformer oil based magnetic fluids: effect of magnetic field strength and exposure time. Journal of Materials Science: Materials in Electronics, 2022, 33, 17113-17124.	2.2	4
3	Optimization of Design Parameters Affecting the Performance of a Magnetic Fluid Rotary Seal. Arabian Journal for Science and Engineering, 2021, 46, 2343-2348.	3.0	18
4	Investigating the effect of outer layer of magnetic particles on cervical cancer cells HeLa by magnetic fluid hyperthermia. Cancer Nanotechnology, 2021, 12, .	3.7	12
5	Controllability of ferrofluids' dielectric spectrum by means of external electric forces. Journal Physics D: Applied Physics, 2021, 54, 035303.	2.8	4
6	Preliminary in-vitro investigation of magnetic fluid hyperthermia in cervical cancer cells. Journal of Magnetism and Magnetic Materials, 2020, 497, 166057.	2.3	13
7	Two stage magnetic fluid vacuum seal for variable radial clearance. Vacuum, 2020, 172, 109087.	3.5	36
8	Contribution of the positional and orientational ordering in anisotropic particle-based MR fluids: static and dynamic rheological study. Rheologica Acta, 2020, 59, 887-904.	2.4	7
9	In vitro hyperthermic effect of magnetic fluid on cervical and breast cancer cells. Scientific Reports, 2020, 10, 15249.	3.3	36
10	Effect of \$\$hbox {Me}^{2+}/hbox {OH}^{-}\$\$ ratio in the formation of \$\$hbox {Mn}_{0.5}{hbox {Zn}}_{{0.5}}{hbox {Fe}}_{{2}}{hbox {O}}_{{4}}\$\$ nanoparticles of different sizes and shapes in association with thermomagnetic property. Pramana - Journal of Physics, 2020, 94, 1.	1.8	2
11	Evaluation of Static and Dynamic Yield Stress for Isotropic and Anisotropic Particle–Based MR Fluids: Modeling and Analysis. Brazilian Journal of Physics, 2020, 50, 399-409.	1.4	5
12	Influence of Magnetic Field on the Two-Photon Absorption and Hyper-Rayleigh Scattering of Manganese–Zinc Ferrite Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 6784-6795.	3.1	9
13	Thermal conductivity of flake-shaped iron particles based magnetorheological suspension: Influence of nano-magnetic particle concentration. Journal of Magnetism and Magnetic Materials, 2020, 503, 166633.	2.3	6
14	Biosynthesis of magnetite nanoparticles: an eco-friendly and scalable approach. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020, 11, 035014.	1.5	5
15	Response to "Comment on: The effect of magnetic field induced aggregates on ultrasound propagation in aqueous magnetic fluid [J. Magn. Magn. Mater. 431 (2017) 74–78]― Journal of Magnetism and Magnetic Materials, 2019, 475, 796-797.	2.3	0
16	Contribution of magnetic nanoparticle in thermal conductivity of flake-shaped iron particles based magnetorheological (MR) fluid. Journal of Applied Physics, 2019, 126, 055104.	2.5	7
17	Nanocatalytic physicochemical adsorption and degradation of organic dyes. Pramana - Journal of Physics, 2019, 92, 1.	1.8	6
18	Morphological metamorphosis of magnetic nanoparticles due to the presence of rare earth atoms in the spinel structure: From spheres to cubes. Materials Chemistry and Physics, 2019, 222, 217-226.	4.0	4

#	Article	IF	CITATIONS
19	Drug prescription patterns in patients with Alzheimer's disease in an urban neuro-specialty clinic in Western India. National Journal of Physiology, Pharmacy and Pharmacology, 2019, 9, 1.	0.1	1
20	Application of Magnetic Fluid in the Energy Sector. , 2019, , 65-89.		0
21	Heating efficiency dependency on size and morphology of magnetite nanoparticles. AIP Conference Proceedings, 2018, , .	0.4	2
22	Defragmentation of lysozyme derived Amyloid β fibril using Biocompatible Magnetic fluid. Journal of Materials Science: Materials in Medicine, 2018, 29, 171.	3.6	3
23	Design and development of large radial clearance static and dynamic magnetic fluid seal. Vacuum, 2018, 156, 325-333.	3.5	24
24	Effect of Size and Morphology on Stability and Thermal Conductivity of ZnO Nanofluid. Journal of Nanofluids, 2018, 7, 284-291.	2.7	8
25	The Effect of Magnetic Field on the Structure Formation in an Oil-Based Magnetic Fluid with Multicore Iron Oxide Nanoparticles. Journal of Nanofluids, 2018, 7, 292-299.	2.7	4
26	Effect of Particle Concentration on Lubricating Properties of Magnetic Fluid. Journal of Nanofluids, 2018, 7, 420-427.	2.7	3
27	Role of inter-particle force between micro and nano magnetic particles on the stability of magnetorheological fluid. AIP Advances, 2017, 7, .	1.3	12
28	Performance of Mn-Zn ferrite magnetic fluid in a prototype distribution transformer under varying loading conditions. International Journal of Thermal Sciences, 2017, 114, 64-71.	4.9	30
29	Temperature dependent acoustic properties of temperature sensitive magnetic fluid subjected to magnetic field. Journal of Molecular Liquids, 2017, 248, 569-576.	4.9	9
30	Nanolubricant: magnetic nanoparticle based. Materials Research Express, 2017, 4, 114003.	1.6	14
31	The effect of magnetic field induced aggregates on ultrasound propagation in aqueous magnetic fluid. Journal of Magnetism and Magnetic Materials, 2017, 431, 74-78.	2.3	9
32	Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles. Journal of Alloys and Compounds, 2016, 678, 478-485.	5.5	147
33	Mechanism of acid corrosion inhibition using magnetic nanofluid. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 045007.	1.5	6
34	Prevention of hot spot temperature in a distribution transformer using magnetic fluid as a coolant. International Journal of Thermal Sciences, 2016, 103, 35-40.	4.9	43
35	The effect of spherical nanoparticles on rheological properties of bi-dispersed magnetorheological fluids. AIP Conference Proceedings, 2015, , .	0.4	2
36	Ultrasonic propagation: A technique to reveal field induced structures in magnetic nanofluids. Ultrasonics, 2015, 60, 126-132.	3.9	14

#	Article	IF	CITATIONS
37	Technique to optimize magnetic response of gelatin coated magnetic nanoparticles. Journal of Materials Science: Materials in Medicine, 2015, 26, 202.	3.6	13
38	Maneuvering thermal conductivity of magnetic nanofluids by tunable magnetic fields. Journal of Applied Physics, 2015, 117, .	2.5	19
39	Effect of carrier and particle concentration on ultrasound properties of magnetic nanofluids. Ultrasonics, 2015, 55, 26-32.	3.9	16
40	Thermo-magnetic properties of ternary polydispersed Mn0.5Zn0.5Fe2O4 ferrite magnetic fluid. Solid State Communications, 2014, 187, 33-37.	1.9	21
41	UV light induced photodegradation of organic dye by ZnO nanocatalysts. AIP Conference Proceedings, 2013, , .	0.4	4
42	Ultrasonic Velocity and Rheological Measurement of Coolants. Solid State Phenomena, 2013, 209, 194-197.	0.3	0
43	Experimental investigation of thermal conductivity of magnetic nanofluids. AIP Conference Proceedings, 2012, , .	0.4	18
44	Magnetization dynamics in rare earth Gd3+ doped Mn0.5Zn0.5Fe2O4 magnetic fluid: Electron spin resonance study. Journal of Magnetic Resonance, 2012, 225, 46-51.	2.1	6
45	Surface spin-glass-like behavior of monodispersed superparamagnetic Mn0.5Zn0.5Fe2O4 magnetic fluid. Applied Physics A: Materials Science and Processing, 2012, 106, 223-228.	2.3	5
46	Investigation of Dynamic Magnetic Properties of Surfactant Coated Monodispersed Fe ₃ O ₄ Nanomagnetic Particles. Journal of Nanofluids, 2012, 1, 93-96.	2.7	5
47	Ac-susceptibility study in rare earth substituted magnetite ferrofluids. Physics Procedia, 2010, 9, 32-35.	1.2	1
48	Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid. Journal of Applied Physics, 2010, 107, .	2.5	124
49	Static and dynamic magnetic properties of monodispersed Mn0.5Zn0.5Fe2O4 nanomagnetic particles. Journal of Applied Physics, 2010, 107, 053907.	2.5	39
50	Monodispersed Superparamagnetic Fe ₃ O ₄ Nanoparticles: Synthesis and Characterization. Journal of Nanoscience and Nanotechnology, 2009, 9, 2104-2110.	0.9	6
51	Structural and magnetic properties of size-controlled Mn0.5Zn0.5Fe2O4 nanoparticles and magnetic fluids. Pramana - Journal of Physics, 2009, 73, 765-780.	1.8	24
52	MehtaetÂal.Reply:. Physical Review Letters, 2008, 100, .	7.8	0
53	Experimental investigation of nearly monodispersed ternary Mn0.5Zn0.5Fe2O4 magnetic fluid. Magnetohydrodynamics, 2008, 44, 19-26.	0.3	1
54	MehtaetÂal.Reply:. Physical Review Letters, 2007, 98, .	7.8	2

4

#	Article	IF	CITATIONS
55	Maghemite Nanocrystal Impregnation by Hydrophobic Surface Modification of Mesoporous Silica. Langmuir, 2007, 23, 8838-8844.	3.5	36
56	Room temperature ferromagnetism in transition metal (V, Cr, Ti) doped In2O3. Journal of Applied Physics, 2007, 101, 09N513.	2.5	92
57	Low-field DC-magnetization study of Ho3+-doped Mn–Zn ferrite ferrofluid. Journal of Magnetism and Magnetic Materials, 2007, 311, 106-110.	2.3	15
58	Spin-glass-like magnetic ordering in Zn substituted magnetite magnetic fluids. Journal of Magnetic Resonance, 2007, 187, 314-319.	2.1	3
59	Ternary monodispersed Mn0.5Zn0.5Fe2O4ferrite nanoparticles: preparation and magnetic characterization. Nanotechnology, 2006, 17, 5970-5975.	2.6	44
60	Experimental Evidence of Zero Forward Scattering by Magnetic Spheres. Physical Review Letters, 2006, 96, 127402.	7.8	56
61	Effect of rare-earth Ho ion substitution on magnetic properties of Fe3O4 magnetic fluids. Journal of Applied Physics, 2006, 99, 08M906.	2.5	18
62	Field-induced diffraction patterns in a magneto-rheological suspension. Journal of Magnetism and Magnetic Materials, 2005, 289, 311-313.	2.3	12
63	Magnetic and Rheological Characterization of Fe3O4 Ferrofluid: Particle Size Effects. Hyperfine Interactions, 2005, 160, 211-217.	0.5	19
64	Magnetically textured ferrofluid in a non-magnetic matrix: Magnetic properties. Bulletin of Materials Science, 2004, 27, 163-168.	1.7	6
65	Magneto-Optical Effects in Temperature-Sensitive Ferrofluids. Applied Optics, 2004, 43, 3619.	2.1	12
66	Spin-glass transition in a model magnetic fluid: Electron spin resonance investigation ofMn0.5Zn0.5Fe2O4nanoparticles dispersed in kerosene. Physical Review B, 2003, 68, .	3.2	21
67	Influence of magnetic anisotropy constant and particle domain magnetization on magneto-dielectric response of substituted manganese ferrite particles dispersed in kerosene. Journal of Magnetism and Magnetic Materials, 2001, 234, 90-94.	2.3	3
68	Magnetocaloric effect in temperature-sensitive magnetic fluids. Bulletin of Materials Science, 2000, 23, 91-95.	1.7	18
69	Electron spin resonance study of a temperature sensitive magnetic fluid. Journal of Applied Physics, 2000, 88, 2799-2804.	2.5	35
70	Gd-substituted ferrite ferrofluid: a possible candidate to enhance pyromagnetic coefficient. Journal of Magnetism and Magnetic Materials, 1999, 201, 129-132.	2.3	65
71	Monodispersed Magnetic Fluids: Synthesis and Characterization. Solid State Phenomena, 0, 155, 155-162.	0.3	7