Jiahai Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3145070/publications.pdf

Version: 2024-02-01

	236925	168389
3,992	25	53
citations	h-index	g-index
55	55	6393
docs citations	times ranked	citing authors
	citations 55	3,992 25 citations h-index 55 55

#	Article	IF	CITATIONS
1	Recent Progress in Cobaltâ€Based Heterogeneous Catalysts for Electrochemical Water Splitting. Advanced Materials, 2016, 28, 215-230.	21.0	2,083
2	PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. Biosensors and Bioelectronics, 2011, 26, 3494-3499.	10.1	229
3	Template-Synthesized Protein Nanotubes. Nano Letters, 2005, 5, 231-234.	9.1	186
4	Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A. Talanta, 2011, 85, 2517-2521.	5.5	144
5	Template-Synthesized DNA Nanotubes. Journal of the American Chemical Society, 2005, 127, 8586-8587.	13.7	117
6	Revelation of the Excellent Intrinsic Activity of MoS ₂ NiS MoO ₃ Nanowires for Hydrogen Evolution Reaction in Alkaline Medium. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7084-7090.	8.0	94
7	G-Quadruplex-Modulated Fluorescence Detection of Potassium in the Presence of a 3500-Fold Excess of Sodium Ions. Analytical Chemistry, 2010, 82, 8356-8360.	6.5	93
8	Integrated 3D MoSe2@Ni0.85Se Nanowire Network with Synergistic Cooperation as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction in Alkaline Medium. Electrochimica Acta, 2017, 246, 712-719.	5.2	69
9	G-quadruplex facilitated turn-off fluorescent chemosensor for selective detection of cupric ion. Chemical Communications, 2010, 46, 7385.	4.1	67
10	Kinetically grafting G-quadruplexes onto DNA nanostructures for structure and function encoding via a DNA machine. Chemical Communications, 2011, 47, 10563.	4.1	55
11	CuO@CoFe Layered Double Hydroxide Core–Shell Heterostructure as an Efficient Water Oxidation Electrocatalyst under Mild Alkaline Conditions. Inorganic Chemistry, 2020, 59, 9491-9495.	4.0	52
12	A new drug-sensing paradigm based on ion-current rectification in a conically shaped nanopore. Nanomedicine, 2008, 3, 13-20.	3.3	51
13	An electrochemical aptasensor for chiral peptide detection using layer-by-layer assembly of polyelectrolyte-methylene blue/polyelectrolyte-graphene multilayer. Analytica Chimica Acta, 2012, 712, 127-131.	5.4	49
14	Learning-enhanced differential evolution for numerical optimization. Soft Computing, 2012, 16, 303-330.	3.6	49
15	Polyoxometalate–Surfactant Hybrids Directed Assembly of Ni ₃ S ₂ into Hollow Microsphere as Pt-Comparable Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Medium. ACS Applied Materials & Interfaces, 2017, 9, 40162-40170.	8.0	40
16	Structureâ€"function relationship exploration for enhanced electro-optic activity in isophorone-based organic NLO chromophores. Dyes and Pigments, 2018, 157, 55-63.	3.7	36
17	Diastereoselective synthesis of cyclopropanes bearing trifluoromethyl-substituted all-carbon quaternary centers from 2-trifluoromethyl-1,3-enynes beyond fluorine elimination. Chemical Communications, 2019, 55, 3879-3882.	4.1	36
18	Vertically aligned NiP2 nanosheets with interlaced mesh network for highly efficient water splitting under alkaline and acid solutions. International Journal of Hydrogen Energy, 2019, 44, 6535-6543.	7.1	35

#	Article	IF	CITATIONS
19	Label-free detection of nucleic acids by turn-on and turn-off G-quadruplex-mediated fluorescence. Analytical and Bioanalytical Chemistry, 2011, 399, 2763-2770.	3.7	34
20	Octahedral Co3O4 particles with high electrochemical surface area as electrocatalyst for water splitting. Electrochimica Acta, 2018, 288, 82-90.	5.2	34
21	pH-Reversed ionic current rectification displayed by conically shaped nanochannel without any modification. Nanoscale, 2011, 3, 3767.	5.6	31
22	Contribution of potassium ion and split modes of G-quadruplex to the sensitivity and selectivity of label-free sensor toward DNA detection using fluorescence. Biosensors and Bioelectronics, 2012, 31, 316-322.	10.1	29
23	PEI/Zr 4+ -coated nanopore for selective and sensitive detection of ATP in combination with single-walled carbon nanotubes. Biosensors and Bioelectronics, 2015, 63, 287-293.	10.1	29
24	Conical nanofluidic channel for selective quantitation of melamine in combination with \hat{l}^2 -cyclodextrin and a single-walled carbon nanotube. Biosensors and Bioelectronics, 2019, 127, 200-206.	10.1	28
25	Biomimetic nanopore for sensitive and selective detection of Hg(<scp>ii</scp>) in conjunction with single-walled carbon nanotubes. Journal of Materials Chemistry B, 2014, 2, 6371-6377.	5.8	25
26	Temperature and doping-tuned coordination environments around electroactive centers in Fe-doped $\hat{l}\pm(\hat{l}^2)$ -Ni(OH)2 for excellent water splitting. Sustainable Energy and Fuels, 2020, 4, 1522-1531.	4.9	24
27	Colorimetric Enantiorecognition of Oligopeptide and Logic Gate Construction Based on DNA Aptamer–Ligand–Gold Nanoparticle Interactions. Chemistry - A European Journal, 2013, 19, 479-483.	3.3	23
28	A light transmission technique for pore size measurement in track-etched membranes. Chemical Communications, 2013, 49, 11415.	4.1	19
29	Bare conical nanopore embedded in polymer membrane for Cr(III) sensing. Talanta, 2015, 140, 219-225.	5.5	18
30	Nanochannel sensor for sensitive and selective adamantanamine detection based on host-guest competition. Talanta, 2020, 219, 121213.	5.5	18
31	Inhibition of G-quadruplex assembling by DNA ligation: A versatile and non-covalent labeling strategy for bioanalysis. Biosensors and Bioelectronics, 2014, 51, 336-342.	10.1	17
32	Co–Fe–Se ultrathin nanosheet-fabricated microspheres for efficient electrocatalysis of hydrogen evolution. Journal of Applied Electrochemistry, 2017, 47, 361-367.	2.9	14
33	Pt CoN supported on TiN-modified carbon nanotubes (Pt CoN/TiN–CNT) as efficient oxygen reduction reaction catalysts in acidic medium. International Journal of Hydrogen Energy, 2018, 43, 14337-14346.	7.1	14
34	Detection of small-sized DNA fragments in a glassy nanopore by utilization of CRISPR-Cas12a as a converter system. Analyst, The, 2022, 147, 905-914.	3.5	14
35	Biomimetic phosphate assay based on nanopores obtained by immobilization of zirconium(IV) on a film of polyethyleneimine. Mikrochimica Acta, 2015, 182, 1387-1393.	5.0	13
36	Gas-breathing polymer film for constructing switchable ionic diodes. RSC Advances, 2015, 5, 35622-35630.	3.6	13

#	Article	IF	Citations
37	DNA as template and P-source for synthesis of Co2P/Co2N core–shell nanostructure embedded in N-doped carbon nanofiber derived from electrospun precursor for oxygen evolution reaction. Electrochimica Acta, 2021, 367, 137562.	5.2	12
38	Investigation of self-assembled protein dimers through an artificial ion channel for DNA sensing. Science Bulletin, 2014, 59, 4946-4952.	1.7	11
39	P-doped CoCO ₃ nanosheets: an ultra-active versatile electrocatalyst for hydrogen evolution, oxygen evolution and hydrazine oxidation reactions. Sustainable Energy and Fuels, 2021, 5, 2257-2265.	4.9	11
40	A modifiable double donor based on bis(<i>N</i> -ethyl- <i>N</i> -hydroxyethyl)aniline for organic optical nonlinear chromophores. Materials Chemistry Frontiers, 2022, 6, 1079-1090.	5.9	11
41	Polygonal WS2-decorated-graphene multilayer films with microcavities prepared from a cheap precursor as anode materials for lithium-ion batteries. Materials Letters, 2019, 254, 73-76.	2.6	10
42	Signal-amplification detection of small molecules by use of Mg2+- dependent DNAzyme. Analytical and Bioanalytical Chemistry, 2013, 405, 4051-4057.	3.7	9
43	Synthesis of Ni _{4.5} Fe _{4.5} S ₈ /Ni ₃ S ₂ film on Ni ₃ Fe alloy foam as an excellent electrocatalyst for the oxygen evolution reaction. RSC Advances, 2019, 9, 10231-10236.	3.6	8
44	Design and synthesis of organic optical nonlinear multichromophore dendrimers based on double-donor structures. Materials Chemistry Frontiers, 2021, 5, 8341-8351.	5.9	8
45	Efficient red electroluminescent devices with very low operation voltage by utilizing hole and electron transport materials as the host. Thin Solid Films, 2021, 717, 138474.	1.8	7
46	Design and synthesis of Phenylaminothiophene donor-based chromophore with enhanced electro-optic activity. Dyes and Pigments, 2021, 192, 109423.	3.7	7
47	Efficient green fluorescent organic light-emitting diodes with extended lifetimes by exploiting an iridium complex as a sensitizer. Journal of Materials Chemistry C, 2021, 9, 15295-15300.	5.5	4
48	Synthesis of second order nonlinear optical multichromophore based on double-donors with enhanced electro-optic coefficients and thermal stability. Dyes and Pigments, 2022, 203, 110276.	3.7	3
49	Engineering multiphase for activating electroactive sites for highly efficient hydrogen evolution: Experimental and theoretical investigation. International Journal of Hydrogen Energy, 2019, 44, 13323-13333.	7.1	2
50	Alloy Foamâ€Derived Ni _{0.86} Fe _{2.14} O ₄ Hexagonal Plates as an Efficient Electrochemical Catalyst for the Oxygen Evolution Reaction. ChemistrySelect, 2020, 5, 1578-1585.	1.5	2
51	High-quality all-fluorescent white organic light-emitting diodes obtained by balancing carriers with hole limit layer. Optical Materials, 2022, 123, 111917.	3.6	2
52	Synthesis of Bis(N,N-diethyl)aniline-Based, Nonlinear, Optical Chromophores with Increased Electro-Optic Activity by Optimizing the Thiolated Isophorone Bridge. Symmetry, 2022, 14, 586.	2.2	2
53	High-performance fluorescent organic electroluminescent devices benefit from sensitization of thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2021, 9, 17526-17530.	5.5	1