Anne Ventura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/314506/publications.pdf Version: 2024-02-01

ANNE VENTUDA

#	Article	IF	CITATIONS
1	Conceptual issue of the dynamic GWP indicator and solution. International Journal of Life Cycle Assessment, 2023, 28, 788-799.	4.7	3
2	Environmental Potential of Earth-Based Building Materials: Key Facts and Issues from a Life Cycle Assessment Perspective. RILEM State-of-the-Art Reports, 2022, , 261-296.	0.7	8
3	A Life Cycle Assessment model of End-of-life scenarios for building deconstruction and waste management. Journal of Cleaner Production, 2022, 339, 130694.	9.3	13
4	Design of concrete: Setting a new basis for improving both durability and environmental performance. Journal of Industrial Ecology, 2021, 25, 233-247.	5.5	12
5	Eco-design of spirulina solar cultivation: Key aspects to reduce environmental impacts using Life Cycle Assessment. Journal of Cleaner Production, 2021, 299, 126741.	9.3	17
6	Prospective Life Cycle Assessment at Early Stage of Product Development: Application to Nickel Slag Valorization Into Cement for the Construction Sector. Frontiers in Built Environment, 2021, 7, .	2.3	4
7	Analysis of corrosion risk due to chloride diffusion for concrete structures in marine environment. Marine Structures, 2020, 73, 102804.	3.8	29
8	Decision-based territorial life cycle assessment for the management of cement concrete demolition waste. Waste Management and Research, 2020, 38, 1405-1419.	3.9	6
9	The "Metal-Energy-Construction Mineral―Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia. Sustainability, 2020, 12, 2191.	3.2	10
10	Convergence of sensitivity analysis methods for evaluating combined influences of model inputs. Reliability Engineering and System Safety, 2019, 189, 109-122.	8.9	10
11	Application of sensitivity analysis in the life cycle design for the durability of reinforced concrete structures in the case of XC4 exposure class. Cement and Concrete Composites, 2018, 87, 53-62.	10.7	14
12	Introducing economic actors and their possibilities for action in LCA using sensitivity analysis: Application to hemp-based insulation products for building applications. Journal of Cleaner Production, 2017, 142, 3905-3916.	9.3	26
13	A new meta-model to calculate carbonation front depth within concrete structures. Construction and Building Materials, 2016, 129, 172-181.	7.2	51
14	Discrete non-parametric kernel estimation for global sensitivity analysis. Reliability Engineering and System Safety, 2016, 146, 47-54.	8.9	3
15	Sensitivity Analysis of Environmental Process Modeling in a Life Cycle Context: A Case Study of Hemp Crop Production. Journal of Industrial Ecology, 2015, 19, 978-993.	5.5	40
16	Modeling of Polycyclic Aromatic Hydrocarbons stack emissions from a hot mix asphalt plant for gate-to-gate Life Cycle Inventory. Journal of Cleaner Production, 2015, 93, 151-158.	9.3	14
17	Linking research activities and their implementation in practice in the construction sector: the LCA Construction 2012 experience. International Journal of Life Cycle Assessment, 2014, 19, 463-470.	4.7	9
18	Classification of chemicals into emission-based impact categories: a first approach for equiprobable and site-specific conceptual frames. International Journal of Life Cycle Assessment, 2011, 16, 148-158.	4.7	4

Anne Ventura

#	Article	IF	CITATIONS
19	Sensitivity of the LCA allocation procedure for BFS recycled into pavement structures. Resources, Conservation and Recycling, 2010, 54, 348-358.	10.8	75
20	LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete. Resources, Conservation and Recycling, 2010, 54, 1231-1240.	10.8	387
21	Technical and environmental effects of concrete production: dry batch versus central mixed plant. Journal of Cleaner Production, 2010, 18, 1320-1327.	9.3	25
22	Airborne Emissions Assessment of Hot Asphalt Mixing. Road Materials and Pavement Design, 2010, 11, 149-169.	4.0	6
23	Airborne Emissions Assessment of Hot Asphalt Mixing Methods and Limitations. Road Materials and Pavement Design, 2010, 11, 149-169.	4.0	14
24	Environmental Impact of a Binding Course Pavement Section, with Asphalt Recycled at Varying Rates. Road Materials and Pavement Design, 2008, 9, 319-338.	4.0	33
25	Polycyclic aromatic hydrocarbons emitted from a hot-mix drum, asphalt plant: study of the influence from use of recycled bitumen. Journal of Environmental Engineering and Science, 2007, 6, 727-734.	0.8	21
26	Electrochemical generation of the Fenton's reagent: application to atrazine degradation. Water Research, 2002, 36, 3517-3522.	11.3	131
27	Dilatational rheology of protein+non-ionic surfactant films at air–water and oil–water interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 143, 211-219.	4.7	84
28	Determination of traces of pesticides in water by solid-phase extraction and liquid chromatography–ionspray mass spectrometry. Journal of Chromatography A, 1997, 777, 115-125.	3.7	39
29	RÃ1e des acteurs dans le processus d'élaboration de projets routiers. Développement Durable Et Territoires. 0	0.1	0