Lehua Qi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/314460/publications.pdf

Version: 2024-02-01

156 papers	2,982 citations	31 h-index	233338 45 g-index
157	157	157	1640
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Representative volume element for composites reinforced by spatially randomly distributed discontinuous fibers and its applications. Composite Structures, 2015, 131, 366-373.	3.1	103
2	Periodic boundary condition and its numerical implementation algorithm for the evaluation of effective mechanical properties of the composites with complicated micro-structures. Composites Part B: Engineering, 2019, 162, 1-10.	5.9	98
3	Numerical evaluation of effective elastic properties of composites reinforced by spatially randomly distributed short fibers with certain aspect ratio. Composite Structures, 2015, 131, 843-851.	3.1	77
4	Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion. Journal of Alloys and Compounds, 2017, 728, 282-288.	2.8	75
5	Effect of the surface morphology of solidified droplet on remelting between neighboring aluminum droplets. International Journal of Machine Tools and Manufacture, 2018, 130-131, 1-11.	6.2	7 5
6	Grafting CNTs on carbon fabrics with enhanced mechanical and thermal properties for tribological applications of carbon fabrics/phenolic composites. Carbon, 2018, 139, 45-51.	5.4	73
7	Printing Functional 3D Microdevices by Laserâ€Induced Forward Transfer. Small, 2017, 13, 1602553.	5.2	70
8	Toughening by <scp><scp>SiC</scp></scp> Nanowires in a Dense <scp><scp>SiC</scp></scp> <fscp>SiC Ceramic Coating for Oxidation Protection of <scp><scp>C</scp></scp> Composites. Journal of the American Ceramic Society, 2012, 95, 3691-3697.</fscp>	1.9	63
9	Oxidation protection of SiC-coated C/C composites by SiC nanowire-toughened CrSi 2 –SiC–Si coating. Corrosion Science, 2012, 55, 394-400.	3.0	57
10	Bamboo-shaped SiC nanowire-toughened SiC coating for oxidation protection of C/C composites. Corrosion Science, 2013 , 70 , $11-16$.	3.0	57
11	Oxidation protection and behavior of C/C composites with an in situ SiC nanowire–SiC–Si/SiC–Si coating. Corrosion Science, 2013, 70, 285-289.	3.0	57
12	Hole-defects in soluble core assisted aluminum droplet printing: Metallurgical mechanisms and elimination methods. Applied Thermal Engineering, 2019, 148, 1183-1193.	3.0	55
13	Numerical evaluation on mechanical properties of short-fiber-reinforced metal matrix composites: Two-step mean-field homogenization procedure. Composite Structures, 2016, 139, 96-103.	3.1	52
14	Oxidation protection of carbon/carbon composites by a novel SiC nanoribbon-reinforced SiC–Si ceramic coating. Corrosion Science, 2015, 92, 272-279.	3.0	51
15	Numerical study of the effects of irregular pores on transverse mechanical properties of unidirectional composites. Composites Science and Technology, 2018, 159, 142-151.	3.8	51
16	3D numerical simulation of successive deposition of uniform molten Al droplets on a moving substrate and experimental validation. Computational Materials Science, 2012, 65, 291-301.	1.4	50
17	Oxidation protection of C/C composites by ultra long SiC nanowire-reinforced SiC–Si coating. Corrosion Science, 2014, 84, 204-208.	3.0	49
18	Direct fabrication of metal tubes with high-quality inner surfaces via droplet deposition over soluble cores. Journal of Materials Processing Technology, 2019, 264, 145-154.	3.1	48

#	Article	IF	CITATIONS
19	Interfacial microstructure and tensile properties of carbon fiber reinforced Mg–Al-RE matrix composites. Journal of Alloys and Compounds, 2016, 663, 686-692.	2.8	46
20	Evaluation of the effect of PyC coating thickness on the mechanical properties of T700 carbon fiber tows. Applied Surface Science, 2019, 463, 310-321.	3.1	46
21	Numerical simulation on elastic properties of short-fiber-reinforced metal matrix composites: Effect of fiber orientation. Composite Structures, 2016, 152, 408-417.	3.1	44
22	Numerical evaluation of the effect of pores on effective elastic properties of carbon/carbon composites. Composite Structures, 2018, 196, 108-116.	3.1	43
23	Numerical evaluation of the influence of porosity on bending properties of 2D carbon/carbon composites. Composites Part B: Engineering, 2018, 136, 72-80.	5.9	37
24	Oxidation protection of C/C composites with in situ bamboo-shaped SiC nanowire-toughened Si–Cr coating. Corrosion Science, 2013, 74, 419-423.	3.0	36
25	Effects of the fiber orientation and fiber aspect ratio on the tensile strength of Csf/Mg composites. Computational Materials Science, 2014, 89, 6-11.	1.4	36
26	Impact-driven ejection of micro metal droplets on-demand. International Journal of Machine Tools and Manufacture, 2016, 106, 67-74.	6.2	36
27	Direct fabrication of unsupported inclined aluminum pillars based on uniform micro droplets deposition. International Journal of Machine Tools and Manufacture, 2017, 116, 18-24.	6.2	35
28	Influence of Ni-CNTs additions on the microstructure and mechanical properties of extruded Mg-9Al alloy. Materials Science & Semp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 678, 101-109.	2.6	34
29	Microstructure and mechanical properties of ultrafine bamboo-shaped SiC rod-reinforced HfC ceramic coating. Surface and Coatings Technology, 2013, 235, 577-581.	2.2	32
30	Influence of Interfacial Bonding between Metal Droplets on Tensile Properties of 7075 Aluminum Billets by Additive Manufacturing Technique. Journal of Materials Science and Technology, 2016, 32, 485-488.	5.6	32
31	Formation of uniform metal traces using alternate droplet printing. International Journal of Machine Tools and Manufacture, 2017, 122, 47-54.	6.2	32
32	Stable micro-feeding of fine powders using a capillary with ultrasonic vibration. Powder Technology, 2011, 214, 237-242.	2.1	30
33	A great improvement of tensile properties of Cf/AZ91D composite through grafting CNTs onto the surface of the carbon fibers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 762, 138061.	2.6	30
34	Tensile properties and damage behaviors of Csf/Mg composite at elevated temperature and containing a small fraction of liquid. Composites Science and Technology, 2012, 72, 1774-1780.	3.8	29
35	Numerical evaluation on the effective thermal conductivity of the composites with discontinuous inclusions: Periodic boundary condition and its numerical algorithm. International Journal of Heat and Mass Transfer, 2019, 134, 735-751.	2.5	29
36	An analysis of the factors affecting strengthening in carbon fiber reinforced magnesium composites. Composite Structures, 2019, 209, 328-336.	3.1	29

#	Article	IF	Citations
37	Metal–organic frameworks/polydopamine synergistic interface enhancement of carbon fiber/phenolic composites for promoting mechanical and tribological performances. Nanoscale, 2021, 13, 20234-20247.	2.8	29
38	Microstructure and tensile behavior of 2D-C f /AZ91D composites fabricated by liquid–solid extrusion and vacuum pressure infiltration. Journal of Materials Science and Technology, 2017, 33, 541-546.	5.6	27
39	Tensile and fatigue behavior of carbon fiber reinforced magnesium composite fabricated by liquid-solid extrusion following vacuum pressure infiltration. Journal of Alloys and Compounds, 2017, 721, 55-63.	2.8	27
40	Constitutive equation for the hot deformation behavior of Csf/AZ91D composites and its validity for numerical simulation. Mechanics of Materials, 2016, 102, 90-96.	1.7	25
41	Experimental investigation on the height deviation of bumps printed by solder jet technology. Journal of Materials Processing Technology, 2017, 243, 291-298.	3.1	25
42	Effect of SiC nanowires addition on the interfacial microstructure and mechanical properties of the Cf-SiCNWs/AZ91D composite. Journal of Alloys and Compounds, 2019, 776, 746-756.	2.8	25
43	A constitutive model for predicting flow stress of Al18B4O33w/AZ91D composite during hot compression and its validation. Computational Materials Science, 2011, 50, 2422-2426.	1.4	24
44	Periodically twinned 6H-SiC nanowires with fluctuating stems. Ceramics International, 2014, 40, 4455-4460.	2.3	24
45	Effect of fiber transverse isotropy on effective thermal conductivity of metal matrix composites reinforced by randomly distributed fibers. Composite Structures, 2016, 152, 637-644.	3.1	24
46	Effect of pore structure on mechanical and tribological properties of paper-based friction materials. Tribology International, 2020, 148, 106307.	3.0	24
47	Embedded printing trace planning for aluminum droplets depositing on dissolvable supports with varying section. Robotics and Computer-Integrated Manufacturing, 2020, 63, 101898.	6.1	22
48	Insights into the impact and solidification of metal droplets in ground-based investigation of droplet deposition 3D printing under microgravity. Applied Thermal Engineering, 2021, 183, 116176.	3.0	22
49	Elimination of droplet rebound off soluble substrate in metal droplet deposition. Materials Letters, 2018, 216, 232-235.	1.3	21
50	An advanced method for efficiently generating composite RVEs with specified particle orientation. Composites Science and Technology, 2021, 205, 108647.	3.8	21
51	The effects of interphase parameters on transverse elastic properties of Carbon–Carbon composites based on FE model. Composite Structures, 2021, 268, 113961.	3.1	21
52	Weakly charged droplets fundamentally change impact dynamics on flat surfaces. Soft Matter, 2019, 15, 5548-5553.	1.2	20
53	Suppression of gravity effects on metal droplet deposition manufacturing by an anti-gravity electric field. International Journal of Machine Tools and Manufacture, 2020, 148, 103474.	6.2	20
54	Fabrication of short carbon fiber preforms coated with pyrocarbon/SiC for liquid metal infiltration. Journal of Materials Science, 2008, 43, 4618-4624.	1.7	19

#	Article	IF	CITATIONS
55	Effect of carbon nanotubes grown temperature on the fracture behavior of carbon fiber reinforced magnesium matrix composites: Interlaminar shear strength and tensile strength. Ceramics International, 2021, 47, 6597-6607.	2.3	19
56	Drop-on-demand printing of recyclable circuits by partially embedding molten metal droplets in plastic substrates. Journal of Materials Processing Technology, 2021, 297, 117268.	3.1	19
57	Constitutive behavior of Csf/AZ91D composites compressed at elevated temperature and containing a small fraction of liquid. Composites Science and Technology, 2011, 71, 955-961.	3.8	18
58	Large-scale synthesis, growth mechanism, and photoluminescence of 3C-SiC nanobelts. Materials Letters, 2013, 109, 275-278.	1.3	18
59	Generation of Three-Dimensional Microstructure Model for Discontinuously Reinforced Composite by Modified Random Sequential Absorption Method. Journal of Engineering Materials and Technology, Transactions of the ASME, 2016, 138, .	0.8	18
60	An algorithm for generation of RVEs of composites with high particle volume fractions. Composites Science and Technology, 2021, 207, 108714.	3.8	18
61	The effect of nickel coating on the mechanical properties and failure modes of continuous carbon fiber reinforced aluminum matrix composites. Journal of Alloys and Compounds, 2022, 904, 164134.	2.8	18
62	Effect of Temperature on the Synthesis of SiC Coating on Carbon Fibers by the Reaction of SiO with the Deposited Pyrolytic Carbon Layer. Journal of Materials Science and Technology, 2010, 26, 211-216.	5.6	17
63	Evaluation for elastic properties of metal matrix composites with randomly distributed fibers: Two-step mean-field homogenization procedure versus FE homogenization method. Journal of Alloys and Compounds, 2016, 658, 241-247.	2.8	17
64	Parametric mapping of linear deposition morphology in uniform metal droplet deposition technique. Journal of Materials Processing Technology, 2019, 264, 234-239.	3.1	17
65	Micro-mechanical model for the effective thermal conductivity of the multi-oriented inclusions reinforced composites with imperfect interfaces. International Journal of Heat and Mass Transfer, 2020, 148, 119167.	2.5	17
66	Wear behaviors of Cf/Mg composites fabricated by extrusion directly following vacuum pressure infiltration technique. Wear, 2013, 307, 127-133.	1.5	16
67	Mean-field homogenization based approach to evaluate macroscopic coefficients of thermal expansion of composite materials. International Journal of Heat and Mass Transfer, 2016, 102, 1321-1333.	2.5	16
68	Interfacial microstructure and mechanical properties of Cf/AZ91D composites with TiO2 and PyC fiber coatings. Micron, 2017, 101, 170-176.	1.1	16
69	Synergistic effect of surface modification of carbon fabrics and multiwall carbon nanotube incorporation for improving tribological properties of carbon fabrics/resin composites. Polymer Composites, 2020, 41, 102-111.	2.3	16
70	Geometry control of closed contour forming in uniform micro metal droplet deposition manufacturing. Journal of Materials Processing Technology, 2017, 243, 474-480.	3.1	15
71	Modeling of the dynamic recrystallization behavior of Csf/AZ91D magnesium matrix composites during hot compression process. Journal of Alloys and Compounds, 2017, 708, 328-336.	2.8	15
72	Potential of porous pyrolytic carbon for producing zero thermal expansion coefficient composites: A multi-scale numerical evaluation. Composite Structures, 2020, 235, 111819.	3.1	15

#	Article	IF	CITATIONS
73	Generation mechanism and suppression method of landing error of two successively deposited metal droplets caused by coalescence and solidification. International Journal of Heat and Mass Transfer, 2021, 172, 121100.	2.5	15
74	Uniform droplet printing of graphene micro-rings based on multiple droplets overwriting and coffee-ring effect. Applied Surface Science, 2020, 499, 143826.	3.1	14
75	A method for the simultaneous identification of anisotropic yield and hardening constitutive parameters for sheet metal forming. International Journal of Mechanical Sciences, 2020, 181, 105756.	3.6	14
76	Interfacial failure behavior of PyC-C f /AZ91D composite fabricated by LSEVI. Journal of Materials Science and Technology, 2018, 34, 1602-1608.	5.6	12
77	Experimental study and mechanism analysis on the effect of substrate wettability on graphene sheets distribution morphology within uniform printing droplets. Journal of Physics Condensed Matter, 2018, 30, 335001.	0.7	12
78	Building the silicon carbide nanowire network on the surface of carbon fibers: Enhanced interfacial adhesion and high-performance wear resistance. Ceramics International, 2019, 45, 22571-22577.	2.3	12
79	Interphase model for FE prediction of the effective thermal conductivity of the composites with imperfect interfaces. International Journal of Heat and Mass Transfer, 2019, 145, 118796.	2.5	12
80	On the role of carbon nanotubes addition in carbon fiber-reinforced magnesium matrix composites. Journal of Materials Science, 2020, 55, 16940-16953.	1.7	12
81	Mechanisms of simultaneously enhanced mechanical and tribological properties of carbon fabrics/phenolic resin composites reinforced with graphite nanoplatelets. Journal of Alloys and Compounds, 2021, 854, 157176.	2.8	12
82	Growth mechanism and thermal behavior of electroless Cu plating on short carbon fibers. Surface and Coatings Technology, 2021, 419, 127294.	2.2	12
83	Improvement of <scp><scp>SiC</scp></scp> <fe"<scp><scp>Si</scp>/<scp>MAS</scp> Interface in the Joints via <i>In Situ</i> <ir> <ir> <ir> American Ceramic Society, 2013, 96, 3926-3932.</ir></ir></ir></fe"<scp>	1.9	11
84	Effect of temperature and strain rate on the tensile properties related to hot cracking of Csf/AZ91D composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 596, 157-164.	2.6	11
85	Evolution of interfacial microstructures and mechanical properties of C f /AZ91 composite during heat treatment. Vacuum, 2017, 145, 245-250.	1.6	11
86	In Situ Growth of Graphene on Carbon Fabrics with Enhanced Mechanical and Thermal Properties for Tribological Applications of Carbon Fabric–Phenolic Composites. Tribology Transactions, 2019, 62, 850-858.	1.1	11
87	Influence of fabric architecture on compressive and failure mechanism of C f /Mg composite fabricated by LSEVI. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 651, 127-134.	2.6	10
88	Superior wear resistance of boron phenolic resin-based composites using fluorine rubber micro powder as high-performance additive. Tribology International, 2020, 142, 106001.	3.0	10
89	A ground-based work of droplet deposition manufacturing toward microgravity: Fine pileup of horizontally ejected metal droplets on vertical substrates. Journal of Manufacturing Processes, 2021, 66, 293-301.	2.8	10
90	Study on stable delivery of charged uniform droplets for freeform fabrication of metal parts. Science China Technological Sciences, 2011, 54, 1833-1840.	2.0	9

#	Article	IF	CITATIONS
91	Ferroceneâ€Catalyzed Growth of Singleâ€Crystalline 6Hâ€SiC Nanoribbons. Journal of the American Ceramic Society, 2014, 97, 3363-3366.	1.9	9
92	Experimental and multi-scale numerical evaluations for effective mechanical properties of 2-D Cf/Mg composites. Composite Structures, 2018, 189, 1-8.	3.1	9
93	A new interpolative homogenization model for evaluation of the effective elasto-plastic responses of two-phase composites. Composite Structures, 2019, 210, 810-821.	3.1	9
94	Evaluation for interfacial fracture of fiber-reinforced pyrocarbon matrix composites by using a zero-thickness cohesive approach. Journal of Alloys and Compounds, 2020, 820, 153378.	2.8	9
95	New numerical algorithm for the periodic boundary condition for predicting the coefficients of thermal expansion of composites. Mechanics of Materials, 2021, 154, 103737.	1.7	9
96	Significant improvement of thermal and tribological performance with polyimide as the matrix of paperâ€based friction materials. Polymer Composites, 2022, 43, 2303-2317.	2.3	9
97	Multi-scale and multi-step modeling of thermal conductivities of 3D braided composites. International Journal of Mechanical Sciences, 2022, 228, 107466.	3.6	9
98	Quantitative characterization of carbon/carbon composites matrix texture based on image analysis using polarized light microscope. Microscopy Research and Technique, 2015, 78, 908-917.	1.2	8
99	Microstructure and thermal expansion behavior of a novel Cf-SiCNWs/AZ91D composite with dual interface. Ceramics International, 2019, 45, 12563-12569.	2.3	8
100	Effect of sealing treatment on corrosion behavior of plasma sprayed ZrO2 coated Cf/Mg composites. Surface and Coatings Technology, 2021, 423, 127627.	2.2	8
101	Metal droplet printing of tube with high-quality inner surface via helical printing trajectory and soluble support. Virtual and Physical Prototyping, 2022, 17, 582-598.	5.3	8
102	Homogenization of transverse elastic properties of Cf/Mg composites at an elevated temperature and containing a small fraction of liquid phase. Composites Science and Technology, 2015, 117, 234-243.	3.8	7
103	Effect of PyC coating on mechanical properties of C _f /AZ91D composites. Surface Engineering, 2018, 34, 852-860.	1.1	7
104	Tensile Properties of 2D-Cf/Mg Composite Fabricated by Liquid-solid Extrusion Following Vacuum Pressure Infiltration. Procedia Engineering, 2014, 81, 1577-1582.	1.2	6
105	Damage mechanism and progressive failure analysis of Cf/Mg composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 666, 257-263.	2.6	6
106	Dissociation mechanisms of CH4 on pristine, N-doped and vacancy graphene by DFT study. Diamond and Related Materials, 2021, 114, 108323.	1.8	6
107	Fabricating patterned microstructures by embedded droplet printing on immiscible deformable surfaces. Journal of Industrial and Engineering Chemistry, 2022, 105, 138-145.	2.9	6
108	Strengthening mechanism of SiC nanowires on microhardness of AZ91D-based composites. Ceramics International, 2021, 47, 30310-30318.	2.3	6

#	Article	IF	CITATIONS
109	Interfacial microstructure and strengthening mechanisms of Cf/Mg composite with double-layer interface. Ceramics International, 2021, 47, 31149-31159.	2.3	6
110	Microstructure and corrosion behavior of ZrO2 coated carbon fiber reinforced magnesium matrix composites sprayed with different powder characteristics. Ceramics International, 2022, 48, 30797-30806.	2.3	6
111	Research on precisionâ€calibration techniques for selected area electron diffraction patterns of pyrocarbon. Microscopy Research and Technique, 2009, 72, 338-342.	1.2	5
112	Design and application of forming device for the thin-walled C f \mid Mg composite component. Journal of Materials Processing Technology, 2016, 238, 459-465.	3.1	5
113	Uniform nitrogen-doped graphene lines with favorable outlines printed by elaborate regulation of drying and overlapping. Applied Surface Science, 2019, 473, 614-621.	3.1	5
114	A new kind of resin-based wet friction material: Non-woven fabrics with isotropic fiber networks as preforms. Friction, 2021, 9, 92-103.	3.4	5
115	Drop-on-demand printing of edge-enhanced and conductive graphene twin-lines by coalescence regulation and multi-layers overwriting. 2D Materials, 2021, 8, 035004.	2.0	5
116	Analysis Techniques of Lattice Fringe Images for Quantified Evaluation of Pyrocarbon by Chemical Vapor Infiltration. Microscopy and Microanalysis, 2014, 20, 1591-1600.	0.2	4
117	Influence of Notch on Mechanical Properties of Cf/Mg Composite Fabricated by LSEVI. Journal of Materials Engineering and Performance, 2015, 24, 3328-3334.	1.2	4
118	Quantitative characterization of the fiber orientation variation in the Csf/Mg composites. Computational Materials Science, 2015, 98, 56-63.	1.4	4
119	Tool wear morphologies and mechanisms for cutting Cf/Mg composites. International Journal of Advanced Manufacturing Technology, 2016, 86, 613-619.	1.5	4
120	Quantitative characterization of the carbon/carbon composites components based on video of polarized light microscope. Microscopy Research and Technique, 2017, 80, 644-651.	1.2	4
121	Inertia-based identification of elastic anisotropic properties for materials undergoing dynamic loadings using the virtual fields method and heterogeneous impact tests. Materials and Design, 2021, 203, 109594.	3.3	4
122	Fractal characterization of pore microstructure evolution in carbon/carbon composites. Science in China Series D: Earth Sciences, 2009, 52, 871-877.	0.9	3
123	Modeling of Generation of Uniform Metal Droplet During Drop-On-Demand Spray Forming. Journal of Computational and Theoretical Nanoscience, 2012, 9, 1408-1412.	0.4	3
124	Modeling of transverse welds formation during liquid–solid extrusion directly following vacuum infiltration of magnesium matrix composite. Journal of Magnesium and Alloys, 2015, 3, 218-223.	5.5	3
125	Effect of MoS2 on the tribological properties of carbon fabric composites under wet conditions. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 232, 126-135.	1.0	3
126	A novel method to improve the line resolution of stretchable graphene-based line by embedded uniform droplet printing. Journal Physics D: Applied Physics, 2020, 53, 385301.	1.3	3

#	Article	IF	Citations
127	Direct printing of surface-embedded stretchable graphene patterns with strong adhesion on viscous substrates. Journal of Industrial and Engineering Chemistry, 2022, , .	2.9	3
128	Growth mode of interfacial products of Csf/Mg-7.6Al composites. Ceramics International, 2022, 48, 26954-26963.	2.3	3
129	Fabrication of Ni-coated carbon nanotubes reinforced magnesium matrix composites. , $2013, \ldots$		2
130	Development and Experimental Research of Aluminium Alloy Droplet Generator based on Mechanical Vibration. Procedia Engineering, 2014, 81, 1583-1588.	1.2	2
131	Modelling of Uniform Micron-sized Metal Particles Production Using Harmonic Mechanical Excitation. Procedia Engineering, 2014, 81, 1312-1317.	1.2	2
132	Principal strain-induced fiber orientation evolution in the C _{sf} /Mg composites with a large deformation. Journal of Composite Materials, 2015, 49, 3229-3240.	1.2	2
133	Effect of Liquid–Solid Extrusion on the High-Temperature Compressive Properties of C _{sf} /Mg Composites. Materials and Manufacturing Processes, 2015, 30, 1391-1396.	2.7	2
134	Development of a droplet generation equipment for nano carbon thin films printing., 2016,,.		2
135	Fabrication and Characterization of Aligned Carbon Nanotubes Cluster Reinforced Magnesium Composite Based On Ultrasound/Magnetic Compound Field. Procedia Engineering, 2017, 207, 95-100.	1.2	2
136	3D Printing of Micro Electrolyte Film by Using Micro-pen-writing. , 2018, , .		2
137	An Identification Method for Anisotropic Plastic Constitutive Parameters of Sheet Metals. Procedia Manufacturing, 2020, 47, 812-815.	1.9	2
138	Simulation and experiment research of the uniform drolet spray process. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2008, 44, 86.	0.7	2
139	A VFM-based identification method for the dynamic anisotropic plasticity of sheet metals. International Journal of Mechanical Sciences, 2022, 230, 107550.	3.6	2
140	Numerical Simulation of Liquid-Solid Extrusion Process Based on the Mechanical Model Coupled with Solidification. Advances in Mechanical Engineering, 2013, 5, 932348.	0.8	1
141	Plastic Micromechanical Response of 2D Cross Ply Magnesium Matrix Composites. Procedia Engineering, 2014, 81, 1354-1359.	1.2	1
142	CARBON NANOTUBES FUNCTIONALIZED WITH METAL NANOPARTICLES ON THE SURFACE FOR DIRECTIONAL ARRANGEMENT. Surface Review and Letters, 2017, 24, 1750013.	0.5	1
143	Development of a Metal Micro-droplet Ejecting Equipment for Manipulation Jetting Trajectory. , 2018, , .		1
144	Simulation of Tensile Behaviors of Bamboo-like Carbon Nanotubes Based on Molecular Structural Mechanics Approach Combining with Finite Element Analysis. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 11-16.	0.4	1

#	Article	IF	Citations
145	Direct Fabrication of Micron-Thickness PVA-CNT Patterned Films by Integrating Micro-Pen Writing of PVA Films and Drop-on-Demand Printing of CNT Micropatterns. Nanomaterials, 2021, 11, 2335.	1.9	1
146	NUMERICAL SIMULATION ON THE LIQUID-SOLID EXTRUSION PROCESS FOR FORMING Al2O3sf/LY12 COMPOSITE TUBES. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2002, 38, 102.	0.7	1
147	The Fabrication of Al <inf>2</inf> O <inf>3</inf> /C morph-genetic ceramics by biotemplating from ramie fibers. , 2010, , .		0
148	Deposition manufacturing of three-dimensional objects by spraying the metal droplets. , 2010, , .		0
149	Numerical investigation of size and chirality effects on mechanical properties of graphene nanoribbons. , 2012, , .		0
150	Liquid-Solid Forming under High Pressure. Advances in Mechanical Engineering, 2014, 6, 476184.	0.8	0
151	Definition and extraction of characterization parameters for pyrocarbon by chemical vapor infiltration based on 0Â0Â2 lattice fringe images. Composite Interfaces, 2017, 24, 381-398.	1.3	0
152	Control of particle size in energetic drop-on-demand inkjet method., 2017,,.		0
153	Simulation of Aluminum Droplet Formation Process Based on the Uniform Droplet Ejection Technique in Microgravity. , 2019, , .		0
154	Plasticity Improvement of CNTs/Mg Nanocomposite Materials Processed by Combining Friction Stir Processing and Ultrasonic-Assisted Extrusion. Minerals, Metals and Materials Series, 2021, , 2221-2230.	0.3	0
155	Experimental and Numerical Evaluations for Failure Mechanism of Notched C _f /Mg Composite. Integrated Ferroelectrics, 2021, 219, 218-232.	0.3	0
156	Control of crystal morphology in energetic drop-on-demand inkjet method. International Journal of Nanomanufacturing, 2020, 16, 340.	0.3	0