
## Diana M Downs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3144553/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Pyridoxal and α-Ketoglutarate Independently Improve Function of Saccharomyces cerevisiae Thi5 in the<br>Metabolic Network of Salmonella enterica. Journal of Bacteriology, 2022, 204, JB0045021.                               | 1.0 | 2         |
| 2  | Mechanism of Pyridoxine 5′-Phosphate Accumulation in Pyridoxal 5′-Phosphate-Binding Protein<br>Deficiency. Journal of Bacteriology, 2022, 204, JB0052121.                                                                      | 1.0 | 5         |
| 3  | Genetic analysis using vitamin B 6 antagonist 4-deoxypyridoxine uncovers a connection between<br>pyridoxal 5′-phosphate and coenzyme A metabolism in Salmonella enterica. Journal of Bacteriology,<br>2022, , jb0060721.       | 1.0 | 1         |
| 4  | Serendipity Reveals the Function and Physiological Role of a Large Family of Proteins. Journal of Bacteriology, 2022, 204, JB0055621.                                                                                          | 1.0 | 1         |
| 5  | 2-Aminoacrylate stress damages diverse PLP-dependent enzymes inÂvivo. Journal of Biological<br>Chemistry, 2022, 298, 101970.                                                                                                   | 1.6 | 4         |
| 6  | Functional characterization of the HMPâ€₽ synthase of Legionella pneumophila (Lpg1565). Molecular<br>Microbiology, 2021, 115, 539-553.                                                                                         | 1.2 | 2         |
| 7  | An Unexpected Role for the Periplasmic Phosphatase PhoN in the Salvage of B <sub>6</sub> Vitamers in Salmonella enterica. Applied and Environmental Microbiology, 2021, 87, .                                                  | 1.4 | 3         |
| 8  | Loss of YggS (COG0325) impacts aspartate metabolism in <i>Salmonella enterica</i> . Molecular<br>Microbiology, 2021, 116, 1232-1240.                                                                                           | 1.2 | 6         |
| 9  | Absence of MMF1 disrupts heme biosynthesis by targeting Hem1p in Saccharomyces cerevisiae. Yeast, 2021, 38, 615-624.                                                                                                           | 0.8 | 5         |
| 10 | The Rid family member RutC of Escherichia coli is a 3-aminoacrylate deaminase. Journal of Biological<br>Chemistry, 2021, 296, 100651.                                                                                          | 1.6 | 5         |
| 11 | Inhibition of glycine cleavage system by pyridoxine 5′â€phosphate causes synthetic lethality inglyA<br>yggSandserA yggSinEscherichia coli. Molecular Microbiology, 2020, 113, 270-284.                                         | 1.2 | 19        |
| 12 | Balancing cost and benefit: How E. coli cleverly averts disulfide stress caused by cystine. Molecular<br>Microbiology, 2020, 113, 1-3.                                                                                         | 1.2 | 2         |
| 13 | Integrated Metabolomics and Transcriptomics Suggest the Global Metabolic Response to 2-Aminoacrylate Stress in Salmonella enterica. Metabolites, 2020, 10, 12.                                                                 | 1.3 | 11        |
| 14 | Two novel fish paralogs provide insights into the Rid family of imine deaminases active in pre-empting enamine/imine metabolic damage. Scientific Reports, 2020, 10, 10135.                                                    | 1.6 | 4         |
| 15 | RidA Proteins Protect against Metabolic Damage by Reactive Intermediates. Microbiology and<br>Molecular Biology Reviews, 2020, 84, .                                                                                           | 2.9 | 22        |
| 16 | The Role of YggS in Vitamin B <sub>6</sub> Homeostasis in <i>Salmonella enterica</i> Is Informed by<br>Heterologous Expression of Yeast <i>SNZ3</i> . Journal of Bacteriology, 2020, 202, .                                    | 1.0 | 15        |
| 17 | Proton Nuclear Magnetic Resonance Metabolomics Corroborates Serine Hydroxymethyltransferase as<br>the Primary Target of 2-Aminoacrylate in a <i>ridA</i> Mutant of Salmonella enterica. MSystems, 2020,<br>5, .                | 1.7 | 6         |
| 18 | Putative Horizontally Acquired Genes, Highly Transcribed during Yersinia pestis Flea Infection, Are<br>Induced by Hyperosmotic Stress and Function in Aromatic Amino Acid Metabolism. Journal of<br>Bacteriology, 2020, 202, . | 1.0 | 14        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Pyridoxal Reductase, PdxI, Is Critical for Salvage of Pyridoxal in <i>Escherichia coli</i> . Journal of<br>Bacteriology, 2020, 202, .                                                                              | 1.0 | 20        |
| 20 | Cj1388 Is a RidA Homolog and Is Required for Flagella Biosynthesis and/or Function in Campylobacter jejuni. Frontiers in Microbiology, 2019, 10, 2058.                                                             | 1.5 | 15        |
| 21 | Reactive Enamines and Imines In Vivo: Lessons from the RidA Paradigm. Trends in Biochemical Sciences, 2019, 44, 849-860.                                                                                           | 3.7 | 30        |
| 22 | Conserved Pyridoxal 5'-Phosphate-Binding Protein YggS Impacts Amino Acid Metabolism through<br>Pyridoxine 5'-Phosphate in <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2019, 85, .            | 1.4 | 26        |
| 23 | <i>SNZ3</i> Encodes a PLP Synthase Involved in Thiamine Synthesis in <i>Saccharomyces cerevisiae</i> .<br>G3: Genes, Genomes, Genetics, 2019, 9, 335-344.                                                          | 0.8 | 17        |
| 24 | Mmf1p Couples Amino Acid Metabolism to Mitochondrial DNA Maintenance in <i>Saccharomyces<br/>cerevisiae</i> . MBio, 2018, 9, .                                                                                     | 1.8 | 23        |
| 25 | Expression of Pyridoxal 5′-Phosphate-Independent Racemases Can Reduce 2-Aminoacrylate Stress in<br>Salmonella enterica. Journal of Bacteriology, 2018, 200, .                                                      | 1.0 | 6         |
| 26 | Increased Activity of Cystathionine β-Lyase Suppresses 2-Aminoacrylate Stress in Salmonella enterica.<br>Journal of Bacteriology, 2018, 200, .                                                                     | 1.0 | 6         |
| 27 | Analyses of variants of the Ser/Thr dehydratase IIvA provide insight into 2-aminoacrylate metabolism<br>in Salmonella enterica. Journal of Biological Chemistry, 2018, 293, 19240-19249.                           | 1.6 | 9         |
| 28 | PA5339, a RidA Homolog, Is Required for Full Growth in Pseudomonas aeruginosa. Journal of<br>Bacteriology, 2018, 200, .                                                                                            | 1.0 | 10        |
| 29 | Perturbation of the metabolic network in Salmonella enterica reveals cross-talk between coenzyme A and thiamine pathways. PLoS ONE, 2018, 13, e0197703.                                                            | 1.1 | 5         |
| 30 | Untargeted metabolomics confirms and extends the understanding of the impact of aminoimidazole<br>carboxamide ribotide (AICAR) in the metabolic network of Salmonella enterica. Microbial Cell, 2018, 5,<br>74-87. | 1.4 | 19        |
| 31 | The three-legged stool of understanding metabolism: integrating metabolomics with biochemical genetics and computational modeling. AIMS Microbiology, 2018, 4, 289-303.                                            | 1.0 | 11        |
| 32 | The Response to 2-Aminoacrylate Differs in Escherichia coli and Salmonella enterica, despite Shared<br>Metabolic Components. Journal of Bacteriology, 2017, 199, .                                                 | 1.0 | 23        |
| 33 | Bacterial physiology: Life without an essential coenzyme. Nature Microbiology, 2017, 2, 16252.                                                                                                                     | 5.9 | 5         |
| 34 | Endogenously generated 2-aminoacrylate inhibits motility in Salmonella enterica. Scientific Reports,<br>2017, 7, 12971.                                                                                            | 1.6 | 14        |
| 35 | Members of the Rid protein family have broad imine deaminase activity and can accelerate the<br>Pseudomonas aeruginosa D-arginine dehydrogenase (DauA) reaction in vitro. PLoS ONE, 2017, 12,<br>e0185544.         | 1.1 | 24        |
| 36 | Lâ€2,3â€diaminopropionate generates diverse metabolic stresses in <i>Salmonella enterica</i> . Molecular<br>Microbiology, 2016, 101, 210-223.                                                                      | 1.2 | 20        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | 2-Aminoacrylate Stress Induces a Context-Dependent Glycine Requirement in <i>ridA</i> Strains of Salmonella enterica. Journal of Bacteriology, 2016, 198, 536-543.                                                                      | 1.0 | 26        |
| 38 | An Unexpected Route to an Essential Cofactor: Escherichia coli Relies on Threonine for Thiamine<br>Biosynthesis. MBio, 2016, 7, e01840-15.                                                                                              | 1.8 | 20        |
| 39 | Der f 34, a Novel Major House Dust Mite Allergen Belonging to a Highly Conserved<br>Rid/YjgF/YER057c/UK114 Family of Imine Deaminases. Journal of Biological Chemistry, 2016, 291,<br>21607-21615.                                      | 1.6 | 17        |
| 40 | Metabolic network structure and function in bacteria goes beyond conserved enzyme components.<br>Microbial Cell, 2016, 3, 260-262.                                                                                                      | 1.4 | 6         |
| 41 | Genomic and experimental evidence for multiple metabolic functions in the RidA/YjgF/YER057c/UK114<br>(Rid) protein family. BMC Genomics, 2015, 16, 382.                                                                                 | 1.2 | 70        |
| 42 | Induction of the Sugar-Phosphate Stress Response Allows Saccharomyces cerevisiae<br>2-Methyl-4-Amino-5-Hydroxymethylpyrimidine Phosphate Synthase To Function in Salmonella enterica.<br>Journal of Bacteriology, 2015, 197, 3554-3562. | 1.0 | 3         |
| 43 | The STM4195 Gene Product (PanS) Transports Coenzyme A Precursors in Salmonella enterica. Journal of Bacteriology, 2015, 197, 1368-1377.                                                                                                 | 1.0 | 34        |
| 44 | From microbiology to cancer biology: the Rid protein family prevents cellular damage caused by endogenously generated reactive nitrogen species. Molecular Microbiology, 2015, 96, 211-219.                                             | 1.2 | 34        |
| 45 | Aminoimidazole Carboxamide Ribotide Exerts Opposing Effects on Thiamine Synthesis in Salmonella enterica. Journal of Bacteriology, 2015, 197, 2821-2830.                                                                                | 1.0 | 10        |
| 46 | <i>Arabidopsis</i> and Maize RidA Proteins Preempt Reactive Enamine/Imine Damage to Branched-Chain<br>Amino Acid Biosynthesis in Plastids  Â. Plant Cell, 2014, 26, 3010-3022.                                                          | 3.1 | 55        |
| 47 | The Cysteine Desulfhydrase CdsH Is Conditionally Required for Sulfur Mobilization to the Thiamine<br>Thiazole in Salmonella enterica. Journal of Bacteriology, 2014, 196, 3964-3970.                                                    | 1.0 | 10        |
| 48 | Endogenous Synthesis of 2-Aminoacrylate Contributes to Cysteine Sensitivity in Salmonella enterica.<br>Journal of Bacteriology, 2014, 196, 3335-3342.                                                                                   | 1.0 | 33        |
| 49 | Amino-4-Imidazolecarboxamide Ribotide Directly Inhibits Coenzyme A Biosynthesis in Salmonella<br>enterica. Journal of Bacteriology, 2014, 196, 772-779.                                                                                 | 1.0 | 9         |
| 50 | Anthranilate Phosphoribosyl Transferase (TrpD) Generates Phosphoribosylamine for Thiamine<br>Synthesis from Enamines and Phosphoribosyl Pyrophosphate. ACS Chemical Biology, 2013, 8, 242-248.                                          | 1.6 | 21        |
| 51 | RidA Proteins Prevent Metabolic Damage Inflicted by PLP-Dependent Dehydratases in All Domains of Life. MBio, 2013, 4, e00033-13.                                                                                                        | 1.8 | 63        |
| 52 | Decreased coenzyme <scp>A</scp> levels in <scp><i>ridA</i></scp> mutant strains of<br><i><scp>S</scp>almonella enterica</i> result from inactivated serine hydroxymethyltransferase.<br>Molecular Microbiology, 2013, 89, 751-759.      | 1.2 | 38        |
| 53 | In the Absence of RidA, Endogenous 2-Aminoacrylate Inactivates Alanine Racemases by Modifying the<br>Pyridoxal 5â€2-Phosphate Cofactor. Journal of Bacteriology, 2013, 195, 3603-3609.                                                  | 1.0 | 43        |
| 54 | The Thiamine Biosynthetic Enzyme ThiC Catalyzes Multiple Turnovers and Is Inhibited by<br>S-Adenosylmethionine (AdoMet) Metabolites. Journal of Biological Chemistry, 2013, 288, 30693-30699.                                           | 1.6 | 42        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Analysis of ThiC Variants in the Context of the Metabolic Network of Salmonella enterica. Journal of<br>Bacteriology, 2012, 194, 6088-6095.                                                                             | 1.0 | 8         |
| 56 | Conserved YjgF Protein Family Deaminates Reactive Enamine/Imine Intermediates of Pyridoxal<br>5′-Phosphate (PLP)-dependent Enzyme Reactions. Journal of Biological Chemistry, 2012, 287, 3454-3461.                     | 1.6 | 110       |
| 57 | Perturbations in Histidine Biosynthesis Uncover Robustness in the Metabolic Network of Salmonella enterica. PLoS ONE, 2012, 7, e48207.                                                                                  | 1.1 | 9         |
| 58 | Suppressor Analyses Identify Threonine as a Modulator of ridA Mutant Phenotypes in Salmonella enterica. PLoS ONE, 2012, 7, e43082.                                                                                      | 1.1 | 19        |
| 59 | The Rhodanese Domain of Thil Is Both Necessary and Sufficient for Synthesis of the Thiazole Moiety of Thiamine in Salmonella enterica. Journal of Bacteriology, 2011, 193, 4582-4587.                                   | 1.0 | 27        |
| 60 | Plasticity in the Purine–Thiamine Metabolic Network of Salmonella. Genetics, 2011, 187, 623-631.                                                                                                                        | 1.2 | 11        |
| 61 | Phosphoribosylpyrophosphate synthetase (PrsA) variants alter cellular pools of ribose 5-phosphate<br>and influence thiamine synthesis in Salmonella enterica. Microbiology (United Kingdom), 2010, 156,<br>950-959.     | 0.7 | 14        |
| 62 | Members of the YjgF/YER057c/UK114 Family of Proteins Inhibit Phosphoribosylamine Synthesis in Vitro.<br>Journal of Biological Chemistry, 2010, 285, 34401-34407.                                                        | 1.6 | 37        |
| 63 | Thiamine biosynthesis can be used to dissect metabolic integration. Trends in Microbiology, 2010, 18, 240-247.                                                                                                          | 3.5 | 29        |
| 64 | Oxidative stress and disruption of labile iron generate specific auxotrophic requirements in Salmonella enterica. Microbiology (United Kingdom), 2009, 155, 295-304.                                                    | 0.7 | 26        |
| 65 | Bacterial ApbC Protein Has Two Biochemical Activities That Are Required for in Vivo Function. Journal of Biological Chemistry, 2009, 284, 110-118.                                                                      | 1.6 | 31        |
| 66 | Reaction of AdoMet with ThiC Generates a Backbone Free Radical. Biochemistry, 2009, 48, 217-219.                                                                                                                        | 1.2 | 25        |
| 67 | ThiC Is an [Fe-S] Cluster Protein That Requires AdoMet To Generate the<br>4-Amino-5-hydroxymethyl-2-methylpyrimidine Moiety in Thiamin Synthesis. Biochemistry, 2008, 47,<br>9054-9056.                                 | 1.2 | 74        |
| 68 | YjgF Is Required for Isoleucine Biosynthesis when <i>Salmonella enterica</i> Is Grown on Pyruvate<br>Medium. Journal of Bacteriology, 2008, 190, 3057-3062.                                                             | 1.0 | 44        |
| 69 | Glutamine Phosphoribosylpyrophosphate Amidotransferase-independent Phosphoribosyl Amine<br>Synthesis from Ribose 5-Phosphate and Glutamine or Asparagine. Journal of Biological Chemistry, 2007,<br>282, 28379-28384.   | 1.6 | 9         |
| 70 | Understanding Microbial Metabolism. Annual Review of Microbiology, 2006, 60, 533-559.                                                                                                                                   | 2.9 | 48        |
| 71 | A connection between iron–sulfur cluster metabolism and the biosynthesis of<br>4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate in Salmonella enterica. Microbiology<br>(United Kingdom), 2006, 152, 2345-2353. | 0.7 | 30        |
| 72 | An Allele of gyrA Prevents Salmonella enterica Serovar Typhimurium from Using Succinate as a<br>Carbon Source. Journal of Bacteriology, 2006, 188, 3126-3129.                                                           | 1.0 | 4         |

| #  | Article                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Inhibition of Fructose-1,6-bisphosphatase by Aminoimidazole Carboxamide Ribotide Prevents Growth of<br>Salmonella enterica purH Mutants on Glycerol. Journal of Biological Chemistry, 2006, 281,<br>33892-33899.                                                                   | 1.6 | 19        |
| 74 | PurF-Independent Phosphoribosyl Amine Formation in yjgF Mutants of Salmonella enterica Utilizes the<br>Tryptophan Biosynthetic Enzyme Complex Anthranilate Synthase-Phosphoribosyltransferase. Journal<br>of Bacteriology, 2006, 188, 6786-6792.                                   | 1.0 | 24        |
| 75 | Probing the Complex System of Metabolic Integration. Progress in Molecular Biology and Translational Science, 2005, 80, 43-94.                                                                                                                                                     | 1.9 | 4         |
| 76 | A Mutant Allele of rpoD Results in Increased Conversion of Aminoimidazole Ribotide to<br>Hydroxymethyl Pyrimidine in Salmonella enterica. Journal of Bacteriology, 2004, 186, 4034-4037.                                                                                           | 1.0 | 9         |
| 77 | Reduced Transaminase B (IlvE) Activity Caused by the Lack of yjgF Is Dependent on the Status of<br>Threonine Deaminase (IlvA) in Salmonella enterica Serovar Typhimurium. Journal of Bacteriology,<br>2004, 186, 803-810.                                                          | 1.0 | 56        |
| 78 | Mutational Analysis of ThiH, a Member of the Radical S-Adenosylmethionine (AdoMet) Protein<br>Superfamily. Journal of Biological Chemistry, 2004, 279, 40505-40510.                                                                                                                | 1.6 | 39        |
| 79 | The stm4066 Gene Product of Salmonella enterica Serovar Typhimurium Has Aminoimidazole Riboside<br>(AIRs) Kinase Activity and Allows AIRs To Satisfy the Thiamine Requirement of pur Mutant Strains.<br>Journal of Bacteriology, 2003, 185, 332-339.                               | 1.0 | 12        |
| 80 | Anthranilate Synthase Can Generate Sufficient Phosphoribosyl Amine for Thiamine Synthesis in<br>Salmonella enterica. Journal of Bacteriology, 2003, 185, 5125-5132.                                                                                                                | 1.0 | 18        |
| 81 | Genomics and bacterial metabolism. Current Issues in Molecular Biology, 2003, 5, 17-25.                                                                                                                                                                                            | 1.0 | 3         |
| 82 | Metabolic Flux in Both the Purine Mononucleotide and Histidine Biosynthetic Pathways Can Influence<br>Synthesis of the Hydroxymethyl Pyrimidine Moiety of Thiamine in Salmonella enterica. Journal of<br>Bacteriology, 2002, 184, 6130-6137.                                       | 1.0 | 30        |
| 83 | Metabolic Defects Caused by Mutations in the isc Gene Cluster in Salmonella enterica Serovar<br>Typhimurium: Implications for Thiamine Synthesis. Journal of Bacteriology, 2000, 182, 3896-3903.                                                                                   | 1.0 | 68        |
| 84 | Thiamin biosynthesis in prokaryotes. Archives of Microbiology, 1999, 171, 293-300.                                                                                                                                                                                                 | 1.0 | 277       |
| 85 | Biosynthesis of the Pyrimidine Moiety of Thiamine Independent of the PurF Enzyme<br>(Phosphoribosylpyrophosphate Amidotransferase) in <i>Salmonella typhimurium</i> : Incorporation<br>of Stable Isotope-Labeled Glycine and Formate. Journal of Bacteriology, 1999, 181, 841-848. | 1.0 | 21        |
| 86 | A Brassica cDNA clone encoding a bifunctional hydroxymethylpyrimidine kinase/thiamin-phosphate<br>pyrophosphorylase involved in thiamin biosynthesis. Plant Molecular Biology, 1998, 37, 955-966.                                                                                  | 2.0 | 18        |
| 87 | Overexpression, purification and characterization of two pyrimidine kinases involved in the<br>biosynthesis of thiamin: 4-amino-5-hydroxymethyl-2-methylpyrimidine kinase and<br>4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate kinase. Tetrahedron, 1998, 54, 15983-15991.  | 1.0 | 47        |
| 88 | ApbA, the Ketopantoate Reductase Enzyme of Salmonella typhimurium Is Required for the Synthesis of<br>Thiamine via the Alternative Pyrimidine Biosynthetic Pathway. Journal of Biological Chemistry, 1998,<br>273, 5572-5576.                                                      | 1.6 | 30        |
| 89 | The <i>panE</i> Gene, Encoding Ketopantoate Reductase, Maps at 10 Minutes and Is Allelic to<br><i>apbA</i> in <i>Salmonella typhimurium</i> . Journal of Bacteriology, 1998, 180, 4757-4759.                                                                                       | 1.0 | 39        |
| 90 | Complex Metabolic Phenotypes Caused by a Mutation in <i>yjgF</i> , Encoding a Member of the Highly<br>Conserved YER057c/YjgF Family of Proteins. Journal of Bacteriology, 1998, 180, 6519-6528.                                                                                    | 1.0 | 72        |

| #  | Article                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Characterization of thiL, Encoding Thiamin-monophosphate Kinase, in Salmonella typhimurium.<br>Journal of Biological Chemistry, 1997, 272, 15702-15707. | 1.6 | 63        |
| 92 | Genetic Analysis of Metabolic Crosstalk and Its Impact on Thiamine Synthesis in <i>Salmonella typhimurium</i> . Genetics, 1996, 143, 37-44.             | 1.2 | 59        |
| 93 | The Cysteine Desulfurase IscS Is a Significant Target of 2-Aminoacrylate Damage in Pseudomonas aeruginosa. MBio, 0, , .                                 | 1.8 | 3         |