
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3144546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microencapsulation with chitosan by spray drying for industry applications – A review. Trends in Food Science and Technology, 2013, 31, 138-155.	7.8	260
2	Application of microencapsulated essential oils in cosmetic and personal healthcare products – a review. International Journal of Cosmetic Science, 2016, 38, 109-119.	1.2	241
3	Microencapsulation of natural antioxidants for food application – The specific case of coffee antioxidants – A review. Trends in Food Science and Technology, 2016, 58, 21-39.	7.8	165
4	Preparation and Incorporation of Functional Ingredients in Edible Films and Coatings. Food and Bioprocess Technology, 2021, 14, 209-231.	2.6	125
5	Microencapsulation of vitamin A: A review. Trends in Food Science and Technology, 2016, 51, 76-87.	7.8	121
6	Encapsulation in food industry with emerging electrohydrodynamic techniques: Electrospinning and electrospraying – A review. Food Chemistry, 2021, 339, 127850.	4.2	121
7	Soluble vitamins (vitamin B12 and vitamin C) microencapsulated with different biopolymers by a spray drying process. Powder Technology, 2016, 289, 71-78.	2.1	107
8	Preliminary studies of rosmarinic acid microencapsulation with chitosan and modified chitosan for topical delivery. Powder Technology, 2016, 297, 44-49.	2.1	84
9	Microencapsulation of \hat{l}^2 -galactosidase with different biopolymers by a spray-drying process. Food Research International, 2014, 64, 134-140.	2.9	82
10	Removal of 2,4-dichlorophenol and pentachlorophenol from waters by sorption using coal fly ash from a Portuguese thermal power plant. Journal of Hazardous Materials, 2007, 143, 535-540.	6.5	68
11	Production, properties, and applications of solid self-emulsifying delivery systems (S-SEDS) in the food and pharmaceutical industries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 108-126.	2.3	66
12	Microencapsulation of Vitamin A by spray-drying, using binary and ternary blends of gum arabic, starch and maltodextrin. Food Hydrocolloids, 2020, 108, 106029.	5.6	63
13	Design and characterization of controlled-release vitamin A microparticles prepared by a spray-drying process. Powder Technology, 2017, 305, 411-417.	2.1	60
14	A new approach for the microencapsulation of curcumin by a spray drying method, in order to value food products. Powder Technology, 2020, 362, 428-435.	2.1	57
15	Pentachlorophenol removal from aqueous matrices by sorption with almond shell residues. Journal of Hazardous Materials, 2006, 137, 1175-1181.	6.5	56
16	Study of microencapsulation and controlled release of modified chitosan microparticles containing vitamin B12. Powder Technology, 2017, 318, 162-169.	2.1	51
17	Design of microparticles containing natural antioxidants: Preparation, characterization and controlled release studies. Powder Technology, 2017, 313, 287-292.	2.1	51
18	Microencapsulation of Curcumin by a Spray-Drying Technique Using Gum Arabic as Encapsulating Agent and Release Studies. Food and Bioprocess Technology, 2018, 11, 1795-1806.	2.6	50

#	Article	IF	CITATIONS
19	Microencapsulation of a Natural Antioxidant from Coffee—Chlorogenic Acid (3-Caffeoylquinic Acid). Food and Bioprocess Technology, 2017, 10, 1521-1530.	2.6	47
20	Spray Drying Encapsulation of Elderberry Extract and Evaluating the Release and Stability of Phenolic Compounds in Encapsulated Powders. Food and Bioprocess Technology, 2019, 12, 1381-1394.	2.6	45
21	Microencapsulation of polyphenols - The specific case of the microencapsulation of Sambucus Nigra L. extracts - A review. Trends in Food Science and Technology, 2020, 105, 454-467.	7.8	45
22	New Trends in the Microencapsulation of Functional Fatty Acidâ€Rich Oils Using Transglutaminase Catalyzed Crosslinking. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 274-289.	5.9	44
23	Application of a cyanobacterial extracellular polymeric substance in the microencapsulation of vitamin B12. Powder Technology, 2019, 343, 644-651.	2.1	42
24	Kinetic models applied to soluble vitamins delivery systems prepared by spray drying. Drying Technology, 2017, 35, 1249-1257.	1.7	41
25	Polysaccharide-based delivery systems for curcumin and turmeric powder encapsulation using a spray-drying process. Powder Technology, 2020, 370, 137-146.	2.1	40
26	A dry and fully dispersible bacterial cellulose formulation as a stabilizer for oil-in-water emulsions. Carbohydrate Polymers, 2020, 230, 115657.	5.1	39
27	Effect of the pH in the formation of β-galactosidase microparticles produced by a spray-drying process. International Journal of Biological Macromolecules, 2015, 78, 238-242.	3.6	34
28	The Influence of Microencapsulation with a Modified Chitosan (Water Soluble) on β-Galactosidase Activity. Drying Technology, 2014, 32, 1575-1586.	1.7	32
29	Methodologies for simulation of gastrointestinal digestion of different controlled delivery systems and further uptake of encapsulated bioactive compounds. Trends in Food Science and Technology, 2021, 114, 510-520.	7.8	32
30	Potential food application of resveratrol microparticles: Characterization and controlled release studies. Powder Technology, 2019, 355, 593-601.	2.1	29
31	Production of vitamin B1 microparticles by a spray drying process using different biopolymers as wall materials. Canadian Journal of Chemical Engineering, 2020, 98, 1682-1695.	0.9	28
32	The progress and application of vitamin E encapsulation – A review. Food Hydrocolloids, 2021, 121, 106998.	5.6	27
33	A preliminary feasibility study for pentachlorophenol column sorption by almond shell residues. Chemical Engineering Journal, 2008, 136, 188-194.	6.6	24
34	Microencapsulation of Gulosibacter molinativorax ON4 T cells by a spray-drying process using different biopolymers. Journal of Hazardous Materials, 2017, 338, 85-92.	6.5	23
35	Development of enzymatically-active bacterial cellulose membranes through stable immobilization of an engineered β-galactosidase. International Journal of Biological Macromolecules, 2018, 115, 476-482.	3.6	23
36	Characterization of biopolymer-based systems obtained by spray-drying for retinoic acid controlled delivery. Powder Technology, 2019, 345, 758-765.	2.1	23

#	Article	IF	CITATIONS
37	STUDY OF THE INHIBITION EFFECT ON THE MICROENCAPSULATED ENZYME b-GALACTOSIDASE. Environmental Engineering and Management Journal, 2012, 11, 1923-1930.	0.2	23
38	In vitro evaluation of microparticles with Laurus nobilis L. extract prepared by spray-drying for application in food and pharmaceutical products. Food and Bioproducts Processing, 2020, 122, 124-135.	1.8	21
39	Edible Films Prepared with Different Biopolymers, Containing Polyphenols Extracted from Elderberry (Sambucus Nigra L.), to Protect Food Products and to Improve Food Functionality. Food and Bioprocess Technology, 2020, 13, 1742-1754.	2.6	19
40	A new approach to the production of zein microstructures with vitamin B12, by electrospinning and spray drying techniques. Powder Technology, 2021, 392, 47-57.	2.1	18
41	Preliminary evaluation and studies on the preparation, characterization and in vitro release studies of different biopolymer microparticles for controlled release of folic acid. Powder Technology, 2020, 369, 279-288.	2.1	17
42	Formulation approaches for improved retinoids delivery in the treatment of several pathologies. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 143, 80-90.	2.0	16
43	Development of Controlled Delivery Functional Systems by Microencapsulation of Different Extracts of Plants: Hypericum perforatum L., Salvia officinalis L. and Syzygium aromaticum. Food and Bioprocess Technology, 2021, 14, 1503-1517.	2.6	15
44	Spray-drying of oil-in-water emulsions for encapsulation of retinoic acid: Polysaccharide- and protein-based microparticles characterization and controlled release studies. Food Hydrocolloids, 2022, 124, 107193.	5.6	15
45	Citronella Oil Microencapsulated in Carboxymethylated Tamarind Gum and its Controlled Release. Engineering Journal, 2019, 23, 217-227.	0.5	15
46	A Key for the Future of the Flavors in Food Industry. , 2017, , 1-19.		14
47	Enzyme kinetics: the whole picture reveals hidden meanings. FEBS Journal, 2015, 282, 2309-2316.	2.2	13
48	Uncertainty in the determination of glucose in aqueous solutions by highâ€performance liquid chromatography with evaporative light scattering detection. Journal of Separation Science, 2009, 32, 3116-3125.	1.3	12
49	Grafting MSI-78A onto chitosan microspheres enhances its antimicrobial activity. Acta Biomaterialia, 2022, 137, 186-198.	4.1	11
50	Recent Advances in Water-Soluble Vitamins Delivery Systems Prepared by Mechanical Processes (Electrospinning and Spray-Drying Techniques) for Food and Nutraceuticals Applications—A Review. Foods, 2022, 11, 1271.	1.9	11
51	Improvement of vitamin E microencapsulation and release using different biopolymers as encapsulating agents. Food and Bioproducts Processing, 2021, 130, 23-33.	1.8	10
52	Optimization of electrospinning parameters for the production of zein microstructures for food and biomedical applications. Micron, 2022, 152, 103164.	1.1	10
53	Production of microparticles of molinate degrading biocatalysts using the spray drying technique. Chemosphere, 2016, 161, 61-68.	4.2	9
54	STUDY OF DIFFERENT ENCAPSULATING AGENTS FOR THE MICROENCAPSULATION OF VITAMIN B12. Environmental Engineering and Management Journal, 2018, 17, 855-864.	0.2	9

#	Article	IF	CITATIONS
55	Innovation and improvement in food fortification: Microencapsulation of vitamin B2 and B3 by a spray-drying method and evaluation of the simulated release profiles. Journal of Dispersion Science and Technology, 2022, 43, 2179-2191.	1.3	8
56	Microencapsulation of Citronella Oil with Carboxymethylated Tamarind Gum. Walailak Journal of Science and Technology, 2018, 15, 515-527.	0.5	7
57	Microencapsulation of retinoic acid by atomization into biopolymeric matrices: Binary and ternary blends of alginic acid sodium, xanthan gum and modified chitosan. Food Hydrocolloids, 2022, 124, 107310.	5.6	7
58	Preliminary studies of microencapsulation and anticancer activity of polyphenols extract from <scp><i>Punica granatum</i></scp> peels. Canadian Journal of Chemical Engineering, 2022, 100, 3240-3252.	0.9	7
59	Application of Biopolymers in Microencapsulation Processes. , 2018, , 191-222.		6
60	DEVELOPMENT AND VALIDATION OF UV SPECTROPHOTOMETRIC METHOD FOR DETERMINING THE HERBICIDE MOLINATE WITH AND WITHOUT ALGINATE MICROPARTICLES. Environmental Engineering and Management Journal, 2015, 14, 303-309.	0.2	5
61	Uncertainty in the Determination of Glucose and Sucrose in Solutions with Chitosan by Enzymatic Methods. Journal of the Brazilian Chemical Society, 2013, , .	0.6	5
62	Food-Grade Microencapsulation Systems to Improve Protection of the Epigallocatechin Gallate. Foods, 2022, 11, 1990.	1.9	5
63	Nanocarriers loaded with nutraceuticals and bioactive ingredients (vitamins and minerals). , 2020, , 373-412.		4