Nikola Ž Knežević

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3144131/publications.pdf

Version: 2024-02-01

331670 1,617 36 21 citations h-index papers

34 g-index 38 38 38 2700 docs citations times ranked citing authors all docs

377865

#	Article	IF	CITATIONS
1	Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites. Progress in Organic Coatings, 2021, 151, 106049.	3.9	2
2	Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2428-2454.	11.7	140
3	Cultivating Multidisciplinarity: Manufacturing and Sensing Challenges in Cultured Meat Production. Biology, 2021, 10, 204.	2.8	35
4	pH-Responsive Release of Ruthenium Metallotherapeutics from Mesoporous Silica-Based Nanocarriers. Pharmaceutics, 2021, 13, 460.	4.5	16
5	Advanced mesoporous silica nanocarriers in cancer theranostics and gene editing applications. Journal of Controlled Release, 2021, 337, 193-211.	9.9	45
6	Investigation of the surface interactions of selected amides with mesoporous silica using FTIR spectroscopy and hyperspectral imaging. Journal of Molecular Structure, 2020, 1219, 128562.	3.6	11
7	Functionalized Periodic Mesoporous Organosilica Nanoparticles for Loading and Delivery of Suramin. Inorganics, 2019, 7, 16.	2.7	5
8	Magnetic nanoarchitectures for cancer sensing, imaging and therapy. Journal of Materials Chemistry B, 2019, 7, 9-23.	5.8	64
9	Point-of-Need DNA Testing for Detection of Foodborne Pathogenic Bacteria. Sensors, 2019, 19, 1100.	3.8	82
10	Amino-acid functionalized porous silicon nanoparticles for the delivery of pDNA. RSC Advances, 2019, 9, 31895-31899.	3.6	14
11	Graphene-based biosensors for on-site detection of contaminants in food. Analytical Methods, 2018, 10, 5061-5070.	2.7	51
12	Mesoporous Silica and Organosilica Nanomaterials as UV-Blocking Agents. ACS Applied Materials & Samp; Interfaces, 2018, 10, 20231-20236.	8.0	49
13	Hard Template Synthesis of Nanomaterials Based on Mesoporous Silica. Metallurgical and Materials Engineering, 2018, 24, .	0.5	23
14	Synthesis and Characterization of Core-Shell Magnetic Mesoporous Silica and Organosilica Nanostructures. MRS Advances, 2017, 2, 1037-1045.	0.9	18
15	Silicon-based nanotheranostics. Nanoscale, 2017, 9, 12821-12829.	5.6	37
16	Effects of organic coating on hyperthermic efficiencies. , 2017, , .		1
17	Magnetic Field-Induced Accentuation of Drug Release from Core/Shell Magnetic Mesoporous Silica Nanoparticles for Anticancer Treatment. Journal of Nanoscience and Nanotechnology, 2016, 16, 4195-4199.	0.9	10
18	Mesoporous silicon nanoparticles for targeted two-photon theranostics of prostate cancer. Journal of Materials Chemistry B, 2016, 4, 3639-3642.	5.8	35

#	Article	lF	Citations
19	Nanodiamond–PMO for two-photon PDT and drug delivery. Journal of Materials Chemistry B, 2016, 4, 5803-5808.	5.8	49
20	Ruthenium(<scp>ii</scp>) complex-photosensitized multifunctionalized porous silicon nanoparticles for two-photon near-infrared light responsive imaging and photodynamic cancer therapy. Journal of Materials Chemistry B, 2016, 4, 1337-1342.	5.8	57
21	Hydroxylated fullerene-capped, vinblastine-loaded folic acid-functionalized mesoporous silica nanoparticles for targeted anticancer therapy. RSC Advances, 2016, 6, 7061-7065.	3.6	24
22	Fullerenol-Capped Porous Silica Nanoparticles for pH-Responsive Drug Delivery. Advances in Materials Science and Engineering, 2015, 2015, 1-6.	1.8	5
23	Frontispiece: Targeted Treatment of Cancer with Nanotherapeutics Based on Mesoporous Silica Nanoparticles. ChemPlusChem, 2015, 80, .	2.8	1
24	Large pore mesoporous silica nanomaterials for application in delivery of biomolecules. Nanoscale, 2015, 7, 2199-2209.	5.6	194
25	Targeted Treatment of Cancer with Nanotherapeutics Based on Mesoporous Silica Nanoparticles. ChemPlusChem, 2015, 80, 26-36.	2.8	53
26	Monomolecular sheets of propeller-shaped triethyl 4,4′,4′′-[benzene-1,3,5-triyltris(ethyne-2,1-diyl)]tribenzoate deuterochloroform monosolvate. Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 937-940.	0.5	0
27	Core/shell magnetic mesoporous silica nanoparticles with radially oriented wide mesopores. Processing and Application of Ceramics, 2014, 8, 109-112.	0.8	14
28	Visible light responsive anticancer treatment with an amsacrine-loaded mesoporous silica-based nanodevice. RSC Advances, 2013, 3, 19388.	3.6	17
29	A magnetic mesoporous silica nanoparticle-based drug delivery system for photosensitive cooperative treatment of cancer with a mesopore-capping agent and mesopore-loaded drug. Nanoscale, 2013, 5, 1544.	5.6	99
30	Magnetic mesoporous silica-based core/shell nanoparticles for biomedical applications. RSC Advances, 2013, 3, 9584.	3.6	123
31	Tuning the Release of Anticancer Drugs from Magnetic Iron Oxide/Mesoporous Silica Core/Shell Nanoparticles. ChemPlusChem, 2012, 77, 48-55.	2.8	41
32	Functionalized mesoporous silica nanoparticle-based visible light responsive controlled release delivery system. Chemical Communications, 2011, 47, 2817.	4.1	149
33	Light―and pHâ€Responsive Release of Doxorubicin from a Mesoporous Silicaâ€Based Nanocarrier. Chemistry - A European Journal, 2011, 17, 3338-3342.	3.3	118
34	[Pt(HPxSC)Cl3], a novel platinum(IV) compound with anticancer properties. European Journal of Pharmacology, 2005, 517, 28-34.	3.5	6
35	Crystal structure of (ethylenediammonium-N,NÂ-di-3-propanoic acid) tetrachloropalladate(II) complex. Journal of Chemical Crystallography, 2004, 34, 185-189.	1.1	4
36	Platinum(IV) complex with pyridoxal semicarbazone. Inorganic Chemistry Communication, 2003, 6, 561-564.	3.9	23