T E Törnqvist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3143854/publications.pdf

Version: 2024-02-01

37 2 papers cit

2,307 27 citations h-index

38 g-index

42 all docs 42 docs citations 42 times ranked 2204 citing authors

#	Article	IF	CITATIONS
1	Coastal Wetland Resilience, Accelerated Seaâ€Level Rise, and the Importance of Timescale. AGU Advances, 2021, 2, e2020AV000334.	2.3	46
2	Engineered Continentalâ€Scale Rivers Can Drive Changes in the Carbon Cycle. AGU Advances, 2021, 2, e2020AV000273.	2.3	6
3	Measuring, modelling and projecting coastal land subsidence. Nature Reviews Earth & Environment, 2021, 2, 40-58.	12.2	118
4	Does Loadâ€Induced Shallow Subsidence Inhibit Delta Growth?. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006153.	1.0	10
5	Organic Matter Accretion, Shallow Subsidence, and River Delta Sustainability. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006231.	1.0	13
6	Global-scale human impact on delta morphology has led to net land area gain. Nature, 2020, 577, 514-518.	13.7	241
7	Tipping points of Mississippi Delta marshes due to accelerated sea-level rise. Science Advances, 2020, 6, eaaz5512.	4.7	80
8	Inception of a global atlas of sea levels since the Last Glacial Maximum. Quaternary Science Reviews, 2019, 220, 359-371.	1.4	90
9	Measuring rates of present-day relative sea-level rise in low-elevation coastal zones: a critical evaluation. Ocean Science, 2019, 15, 61-73.	1.3	40
10	Crevasse Splays Versus Avulsions: A Recipe for Land Building With Levee Breaches. Geophysical Research Letters, 2018, 45, 4058-4067.	1.5	65
11	Anatomy of Mississippi Delta growth and its implications for coastal restoration. Science Advances, 2018, 4, eaar4740.	4.7	88
12	Future Change to Tideâ€Influenced Deltas. Geophysical Research Letters, 2018, 45, 3499-3507.	1.5	68
13	Mechanisms of late <scp>Q</scp> uaternary fault throwâ€rate variability along the north central Gulf of Mexico coast: implications for coastal subsidence. Basin Research, 2017, 29, 557-570.	1.3	18
14	Short organic carbon turnover time and narrow ¹⁴ C age spectra in early Holocene wetland paleosols. Geochemistry, Geophysics, Geosystems, 2017, 18, 142-155.	1.0	9
15	Vulnerability of Louisiana's coastal wetlands to present-day rates of relative sea-level rise. Nature Communications, 2017, 8, 14792.	5.8	215
16	Efficient retention of mud drives land building on the Mississippi Delta plain. Earth Surface Dynamics, 2017, 5, 387-397.	1.0	35
17	Late Holocene evolution of a coupled, mud-dominated delta plain–chenier plain system, coastal Louisiana, USA. Earth Surface Dynamics, 2017, 5, 689-710.	1.0	34
18	Palaeo-sea-level and palaeo-ice-sheet databases: problems, strategies, and perspectives. Climate of the Past, 2016, 12, 911-921.	1.3	27

#	Article	IF	Citations
19	Connecting the backwater hydraulics of coastal rivers to fluvio-deltaic sedimentology and stratigraphy. Geology, 2016, 44, 979-982.	2.0	65
20	The contribution of glacial isostatic adjustment to projections of seaâ€level change along the Atlantic and Gulf coasts of North America. Earth's Future, 2016, 4, 440-464.	2.4	58
21	Episodic overbank deposition as a dominant mechanism of floodplain and delta-plain aggradation. Geology, 2015, 43, 875-878.	2.0	120
22	Understanding subsidence in the Mississippi Delta region due to sediment, ice, and ocean loading: Insights from geophysical modeling. Journal of Geophysical Research: Solid Earth, 2014, 119, 3838-3856.	1.4	60
23	Rapid and widespread response of the Lower Mississippi River to eustatic forcing during the last glacial-interglacial cycle: Reply. Bulletin of the Geological Society of America, 2013, 125, 1375-1375.	1.6	0
24	Rapid and widespread response of the Lower Mississippi River to eustatic forcing during the last glacial-interglacial cycle. Bulletin of the Geological Society of America, 2012, 124, 690-704.	1.6	51
25	Links between early Holocene ice-sheet decay, sea-level rise and abrupt climate change. Nature Geoscience, 2012, 5, 601-606.	5.4	152
26	Synchronizing a sea-level jump, final Lake Agassiz drainage, and abrupt cooling 8200years ago. Earth and Planetary Science Letters, 2012, 315-316, 41-50.	1.8	60
27	Quantifying Holocene lithospheric subsidence rates underneath the Mississippi Delta. Earth and Planetary Science Letters, 2012, 331-332, 21-30.	1.8	55
28	High-resolution numerical modeling of tides in the western Atlantic, Gulf of Mexico, and Caribbean Sea during the Holocene. Journal of Geophysical Research, 2011, 116, .	3.3	69
29	The seaâ€level conundrum: case studies from palaeoâ€archives. Journal of Quaternary Science, 2010, 25, 19-25.	1.1	32
30	Investigating the impact of Lake Agassiz drainage routes on the 8.2 ka cold event with a climate model. Climate of the Past, 2009, 5, 471-480.	1.3	10
31	Spatial variability of late Holocene and 20th century sea-level rise along the Atlantic coast of the United States. Geology, 2009, 37, 1115-1118.	2.0	164
32	A new Late Holocene sea-level record from the Mississippi Delta: evidence for a climate/sea level connection?. Quaternary Science Reviews, 2009, 28, 1737-1749.	1.4	60
33	Sustaining coastal urban ecosystems. Nature Geoscience, 2008, 1, 805-807.	5.4	21
34	A Dutch geoscience perspective on the Katrina disaster. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2007, 86, 307-315.	0.6	6
35	Did the last sea level lowstand always lead to cross-shelf valley formation and source-to-sink sediment flux?. Journal of Geophysical Research, 2006, 111, .	3.3	33
36	Causes of River Avulsion: Insights from the Late Holocene Avulsion History of the Mississippi River, U.S.ADiscussion. Journal of Sedimentary Research, 2006, 76, 959-959.	0.8	6

T E TöRNQVIST

#	Article	IF	CITATIONS
37	Conditioning a Process-Based Model of Sedimentary Architecture to Well Data. Journal of Sedimentary Research, 2001, 71, 868-879.	0.8	41