Valery Koshelets

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3143831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shunted Josephson Junctions and Optimization of Niobium Integrated Matching Circuits. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	3
2	Flux-Pumped Josephson Travelling-Wave Parametric Amplifiers Based on Bi-SQUID Cells. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	5
3	Dispersive Spectrometry At Terahertz Frequencies for Probing the Quality of NbTiN Superconducting Films. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-6.	1.7	4
4	Direct Experimental Observation of Harmonics of Josephson Generation in the Flux-Flow Oscillator. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-6.	1.7	4
5	Characterization of the Parameters of Superconducting NbN and NbTiN Films Using Parallel Plate Resonator. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	5
6	Study and Comparison of Laboratory Terahertz Sources Based on a Backward Wave Oscillator, a Semiconductor Microwave Frequency Multiplier with Large Numbers of Harmonics, and a Long Josephson Junction. Journal of Communications Technology and Electronics, 2021, 66, 278-288.	0.5	1
7	Superconducting Structures for Study and Phase Synchronization of Integrated Terahertz Oscillators. Journal of Communications Technology and Electronics, 2021, 66, 473-479.	0.5	3
8	A Superconducting Terahertz Flux-Flow Oscillator: Estimation of the Emission Power to Open Space. , 2021, , .		1
9	The Sub-THz Emission of the Human Body Under Physiological Stress. IEEE Transactions on Terahertz Science and Technology, 2021, 11, 381-388.	3.1	10
10	Characterization of superconducting NbTiN films using a dispersive Fourier transform spectrometer. Applied Physics Letters, 2021, 119, .	3.3	5
11	THz Range Low-Noise SIS Receivers for Space and Ground-Based Radio Astronomy. Applied Sciences (Switzerland), 2021, 11, 10087.	2.5	10
12	Fabrication of Superconducting Nb–AlN–NbN Tunnel Junctions Using Electron-Beam Lithography. Electronics (Switzerland), 2021, 10, 2944.	3.1	6
13	Fabrication of NIS and SIS Nanojunctions with Aluminum Electrodes and Studies of Magnetic Field Influence on IV Curves. Electronics (Switzerland), 2021, 10, 2894.	3.1	2
14	Electron Beam Lithography Fabrication of Superconducting Tunnel Structures. Physics of the Solid State, 2021, 63, 1351-1355.	0.6	0
15	Terahertz Spectroscopy System of Gas Mixtures Based on a Solid State Superconducting Source and a Terahertz Receiver. Physics of the Solid State, 2021, 63, 1414-1418.	0.6	2
16	A Terahertz Source of Radiation to Open Space Based on a Long Josephson Junction. Physics of the Solid State, 2020, 62, 1543-1548.	0.6	5
17	A superconducting flux-flow oscillator of terahertz range. Journal of Physics: Conference Series, 2020, 1559, 012021.	0.4	1
18	The Influence of LO Power Heating of the Tunnel Junction on the Performance of THz SIS Mixers. IEEE Transactions on Terahertz Science and Technology, 2020, 10, 721-730.	3.1	1

#	Article	IF	CITATIONS
19	Parameters of the Tunnel Barrier of Superconducting Niobium-Based Structures. Physics of the Solid State, 2020, 62, 1534-1538.	0.6	2
20	Terahertz Spectroscopy of Gas Absorption Using the Superconducting Flux-Flow Oscillator as an Active Source and the Superconducting Integrated Receiver. Sensors, 2020, 20, 7267.	3.8	7
21	Field cooled annular Josephson tunnel junctions. Superconductor Science and Technology, 2020, 33, 075013.	3.5	3
22	Superconducting Receivers for Space, Balloon, and Ground-Based Sub-Terahertz Radio Telescopes. Radiophysics and Quantum Electronics, 2020, 63, 479-500.	0.5	5
23	Superconducting Terahertz Receivers for Space and Ground-based Radio Astronomy. , 2020, , .		0
24	Low-noise THz-range Nb based SIS Receivers for Radio Astronomy. , 2020, , .		1
25	Study of the THz Oscillator Based on Josephson Junction and Comparative Review with THz Sources – Backward Wave Oscillator and Semiconductor-based Frequency Multiplier. , 2020, , .		0
26	Flux-flow effects in annular Josephson tunnel junctions. Physical Review B, 2019, 100, .	3.2	3
27	Response to "Comment on â€~Observation of nuclear gamma resonance with superconducting tunnel junction detectors'―[AIP Advances 9, 059101 (2019)]. AIP Advances, 2019, 9, .	1.3	0
28	An Antenna with a Feeder for a Superconducting Terahertz Josephson Oscillator with Phase Locking. Journal of Communications Technology and Electronics, 2019, 64, 1081-1086.	0.5	7
29	Tunable superconducting Josephson dielectric metamaterial. AIP Advances, 2019, 9, 105320.	1.3	5
30	Terahertz Source Radiating to Open Space Based on the Superconducting Flux-Flow Oscillator: Development and Characterization. IEEE Transactions on Terahertz Science and Technology, 2019, 9, 557-564.	3.1	14
31	A Tunable subTHz Source Based on the Josephson Oscillator with Phase Locking. , 2019, , .		1
32	Design and Performance of a Sideband Separating SIS Mixer for 800–950 GHz. IEEE Transactions on Terahertz Science and Technology, 2019, 9, 532-539.	3.1	10
33	Bridging the terahertz gap for chaotic sources with superconducting junctions. Physical Review B, 2019, 99, .	3.2	13
34	Flux-flow Josephson oscillator as the broadband tunable terahertz source to open space. Journal of Applied Physics, 2019, 125, .	2.5	18
35	Resonant Cavity Modes in <mmi:math xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td"><td>mi>Sı&/mr ıml:<u>mi></u></td><td>nl:m&<mmla nml:mrow><</mmla </td></mmi:math>	mi> Sı &/mr ıml: <u>mi></u>	nl:m& <mmla nml:mrow><</mmla
36	Low-Noise Sis Receivers for New Radio-Astronomy Projects. Radiophysics and Quantum Electronics, 2019, 62, 547-555	0.5	8

2019, 62, 547-555.

#	Article	IF	CITATIONS
37	A 0.33-0.73 THz source based on phase-locked Josephson flux-flow oscillator. , 2019, , .		0
38	Determination of the Parameters of Tunneling Barriers of Superconducting Tunnel Structures for Submillimeter Receivers. Journal of Communications Technology and Electronics, 2019, 64, 1144-1148.	0.5	1
39	Microscopic Tunneling Model of Nb–AlN–NbN Josephson Flux-Flow Oscillator. Journal of Low Temperature Physics, 2019, 194, 312-324.	1.4	7
40	Two-tone spectroscopy of a SQUID metamaterial in the nonlinear regime. Physical Review Research, 2019, 1, .	3.6	6
41	Investigation of the Harmonic Mixer and Low-Frequency Converter Regimes in a Superconducting Tunnel Junction. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	4
42	Flip-Chip High-Tc DC SQUID Magnetometer With a Ferromagnetic Flux Antenna. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	4
43	Development of a Josephson vortex two-state system based on a confocal annular Josephson junction. Superconductor Science and Technology, 2018, 31, 025003.	3.5	8
44	A 0.3-0.7 THz flux-flow oscillator integrated with the slot antenna and elliptical lens. Journal of Physics: Conference Series, 2018, 1124, 071001.	0.4	4
45	Slot Lens Antenna Based on Thin Nb Films for the Wideband Josephson Terahertz Oscillator. Physics of the Solid State, 2018, 60, 2173-2177.	0.6	9
46	Compact High- <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:msub><mml:mi>T</mml:mi><mml:mi>c</mml:mi></mml:msub></mml:math> Superconducting Terahertz emitter operating up to 86 K. Physical Review Applied, 2018, 10, .	3.8	18
47	High-resolution terahertz spectroscopy with a noise radiation source based on high- <i>T</i> _c superconductors. Journal Physics D: Applied Physics, 2017, 50, 035305.	2.8	15
48	Tuning THz emission properties of Bi ₂ Sr ₂ CaCu ₂ O _{8+<i>δ</i>} intrinsic Josephson junction stacks by charge carrier injection. Superconductor Science and Technology, 2017, 30, 034006.	3.5	4
49	Superconductive Ultracompact Magnetically Coupled Resonator With Twin-Spiral Structure. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-4.	1.7	3
50	Nondestructive Evaluation Using a High-<italic>T</italic> _c SQUID Microscope. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	6
51	The 700–950 GHz Superconducting Receiving Structures for Radio Astronomy. Radiophysics and Quantum Electronics, 2017, 59, 711-714.	0.5	4
52	High- <i>T_c</i> SQUID biomagnetometers. Superconductor Science and Technology, 2017, 30, 083001.	3.5	60
53	Josephson flux-flow oscillator: The microscopic tunneling approach. Physical Review B, 2017, 96, .	3.2	27
54	High-symmetry DC SQUID based on the Nb/AlOx/Nb Josephson junctions for nondestructive evaluation. Journal of Communications Technology and Electronics, 2017, 62, 1306-1310.	0.5	2

#	Article	IF	CITATIONS
55	Coherent oscillations of driven rf SQUID metamaterials. Physical Review E, 2017, 95, 050201.	2.1	16
56	Self-Mixing Spectra of Terahertz Emitters Based on Bi2Sr2CaCu2O8+δ Intrinsic Josephson-Junction Stacks. Physical Review Applied, 2017, 8, .	3.8	8
57	Terahertz Spectroscopy of Dilute Gases Using <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>Bi</mml:mi></mml:mrow><mml: Physical Review Applied, 2017, 8, .</mml: </mml:msub></mml:mrow></mml:math 	:mrow> <r< td=""><td>nm1:mn>2<</td></r<>	nm1:mn>2<
58	Registering the radiation spectrum of a Mössbauer 119mSn source using superconducting tunnel junction detectors. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 874-878.	0.6	1
59	Quick Technology for Fabrication of BiSrCaCuO Mesas and Its Application for Spectroscopy. , 2017, , .		0
60	Chaotic flux flow in T-junction Josephson oscillator. , 2017, , .		0
61	Superconducting Quantum Interferometers for Nondestructive Evaluation. Sensors, 2017, 17, 2798.	3.8	16
62	Interaction of phase-diffusion field with a molecular gas. EPJ Web of Conferences, 2017, 132, 03042.	0.3	3
63	Applications in Superconducting SIS Mixers and Oscillators: Toward Integrated Receivers. , 2017, , 185-244.		3
64	Observation of nuclear gamma resonance with superconducting tunnel junction detectors. AIP Advances, 2016, 6, 025315.	1.3	3
65	Developing topologies of thin-film SQUID sensors for measuring extremely subtle magnetic fields. Physics of the Solid State, 2016, 58, 2203-2206.	0.6	1
66	Analysis of high-frequency parameters of superconducting planar structures. Journal of Communications Technology and Electronics, 2016, 61, 1395-1399.	0.5	1
67	Investigation of the regimes of mixing of superconducting tunneling structures. Physics of the Solid State, 2016, 58, 2191-2195.	0.6	2
68	Tunnel superconducting junctions for a cryogenic multiplexing system. Journal of Communications Technology and Electronics, 2016, 61, 1064-1068.	0.5	1
69	Three-Dimensional Simulations of the Electrothermal and Terahertz Emission Properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" > <mml:mrow> <mml:msub> <mml:mrow> <mml:mi> Bi < /mml:mi > </mml:mi></mml:mrow> <mml: Physical Review Applied, 2016, 5, .</mml: </mml:msub></mml:mrow></mml:math 	:mrow> <r< td=""><td>nm1:mn>2<</td></r<>	nm1:mn>2<
70	Superconducting integrated terahertz receiver for spectral analysis of gas compounds. Journal of Physics: Conference Series, 2016, 741, 012169.	0.4	3
71	Gradiometers based on superconducting quantum interference device for nondestructive testing. Journal of Communications Technology and Electronics, 2016, 61, 1383-1389.	0.5	1
72	Application of superconducting integrated receiver in the TELIS instrument for the spectroscopic study of atmosphere. Journal of Communications Technology and Electronics, 2016, 61, 1314-1319.	0.5	1

#	Article	IF	CITATIONS
73	Superconducting terahertz receivers for space-borne and balloon-borne radio telescopes. Bulletin of the Russian Academy of Sciences: Physics, 2016, 80, 471-475.	0.6	1
74	Superconducting quantum interference devices based on YBa2Cu3O7–x films for nondestructive testing. Journal of Communications Technology and Electronics, 2016, 61, 86-92.	0.5	2
75	High-Gap Nb-AlN-NbN SIS Junctions for Frequency Band 790–950 GHz. IEEE Transactions on Terahertz Science and Technology, 2016, 6, 127-132.	3.1	35
76	High- \$m{T}_{m{c}}\$ Dual-SQUIDs With Graphoepitaxial Step-Edge Junctions. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.7	4
77	Tuning the Terahertz Emission Power of an Intrinsic Josephson-Junction Stack with a Focused Laser Beam. Physical Review Applied, 2015, 3, .	3.8	34
78	Registration of Mössbauer conversion electrons by an STJ detector. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 1062-1066.	0.6	2
79	Integration Issues of Graphoepitaxial High- <inline-formula> <tex-math notation="TeX">\${m T}_{m c}\$</tex-math></inline-formula> SQUIDs Into Multichannel MEG Systems. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	9
80	Compact Superconducting Terahertz Source Operating in Liquid Nitrogen. Physical Review Applied, 2015, 3, .	3.8	35
81	Electrothermal behavior and terahertz emission properties of a planar array of two Bi2Sr2CaCu2O8+Î întrinsic Josephson junction stacks. Superconductor Science and Technology, 2015, 28.055004 Thermal and electromagnetic properties of cmml:math	3.5	7
82	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi mathvariant="normal">Bi<mml:mn>2</mml:mn></mml:mi </mml:msub> <mml:msub><mml:mi mathvariant="normal">Sr<mml:mn>2</mml:mn></mml:mi </mml:msub> <mml:msub><mml:mi mathvariant="normal">CaCu<mml:mn>2</mml:mn></mml:mi </mml:msub> <mml:msub><mml:mi< td=""><td>3.2</td><td>28</td></mml:mi<></mml:msub>	3.2	28
83	mathvariant="normal">O <mml:mn>8</mml:mn> intrinsic Josephson Superconducting Integrated Terahertz Spectrometers. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 687-694.	3.1	30
84	Continuous wave terahertz radiation above 1 THz from Josephson junction arrays. , 2014, , .		0
85	A grain boundary Josephson junction as a mixer to evaluate terahertz emission from intrinsic Josephson junctions. , 2014, , .		0
86	A one-dimensional tunable magnetic metamaterial: erratum. Optics Express, 2014, 22, 13041.	3.4	0
87	Radiation power and linewidth of a semifluxon-based Josephson oscillator. Applied Physics Letters, 2014, 104, 062603.	3.3	2
88	Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks with improved cooling: Coherent emission above 1 THz. Applied Physics Letters, 2014, 105, .	3.3	58
89	Sub-terahertz sound excitation and detection by a long Josephson junction. Superconductor Science and Technology, 2014, 27, 065010.	3.5	5
90	Multistability and switching in a superconducting metamaterial. Nature Communications, 2014, 5, 3730.	12.8	55

#	Article	IF	CITATIONS
91	Spectral Properties of a Terahertz Oscillator Based on the BI2SR2CACU2O8+l̃ Mesastructure. Radiophysics and Quantum Electronics, 2014, 56, 582-590.	0.5	3
92	Superconducting integrated terahertz receivers. Journal of Physics: Conference Series, 2014, 486, 012026.	0.4	4
93	Terahertz Imaging System Based on Superconducting Heterodyne Integrated Receiver. NATO Science for Peace and Security Series B: Physics and Biophysics, 2014, , 113-125.	0.3	4
94	A STJ X-ray detector with a β-tantalum sublayer. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 775-778.	0.6	0
95	The cryogenic phase detector. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 28-31.	0.6	1
96	Heat release in the cryogenic system of a superconducting integrated detector and the influence of heat on its operation. Technical Physics, 2013, 58, 430-438.	0.7	0
97	Harmonic phase detector for phase locking of cryogenic terahertz oscillators. Applied Physics Letters, 2013, 103, 102601.	3.3	3
98	High-\$T_{m c}\$ DC SQUIDs for Magnetoencephalography. IEEE Transactions on Applied Superconductivity, 2013, 23, 1600705-1600705.	1.7	52
99	Effect of Verb Subdivision and Noun Incorporation on Dependency Parsing. , 2013, , .		Ο
100	Terahertz emission and detection both based on high- <i>Tc</i> superconductors: Towards an integrated receiver. Applied Physics Letters, 2013, 102, .	3.3	91
101	Imaging the electromagnetic response of superconducting metasurfaces. , 2013, , .		2
102	Self-field effects in window-type Josephson tunnel junctions. Superconductor Science and Technology, 2013, 26, 055021.	3.5	12
103	A one-dimensional tunable magnetic metamaterial. Optics Express, 2013, 21, 22540.	3.4	44
104	Gaussianity revisited: exploring the Kibble–Zurek mechanism with superconducting rings. Journal of Physics Condensed Matter, 2013, 25, 404207.	1.8	5
105	Design and experimental study of superconducting left-handed transmission lines with tunable dispersion. Superconductor Science and Technology, 2013, 26, 114003.	3.5	10
106	Protecting SQUID metamaterials against stray magnetic fields. Superconductor Science and Technology, 2013, 26, 094003.	3.5	12
107	Compacted tunable split-ring resonators. Applied Physics Letters, 2013, 103, .	3.3	6
108	Modeling the linewidth dependence of coherent terahertz emission from intrinsic Josephson junction stacks in the hot-spot regime. Physical Review B, 2013, 88, .	3.2	34

#	Article	IF	CITATIONS
109	Evaluation of terahertz emission from intrinsic josephson junctions using a high-T <inf>c</inf> superconductor grain boundary Josephson junction. , 2013, , .		0
110	Towards practical applications of THz Josephson oscillators with sub-mW power and 500 GHz frequency tunability. , 2013, , .		0
111	HCl and ClO in activated Arctic air; first retrieved vertical profiles from TELIS submillimetre limb spectra. Atmospheric Measurement Techniques, 2012, 5, 487-500.	3.1	19
112	Long Josephson tunnel junctions with doubly connected electrodes. Physical Review B, 2012, 85, .	3.2	8
113	The current stage of development of the receiving complex of the millimetron space observatory. Radiophysics and Quantum Electronics 2012, 54, 557,568 Linewidth dependence of coherent terahertz emission from Bi <mml:math< td=""><td>0.5</td><td>14</td></mml:math<>	0.5	14
114	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub> Sr <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>CaCu<mml:math< td=""><td>3.2</td><td>91</td></mml:math<></mml:math 	3.2	91
115	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /> Magnetoencephalography using a Multilayer hightc DC SQUID Magnetometer. Physics Procedia, 2012, 36, 66-71.</mml:mrow </mml:msub>	1.2	16
116	Resonant subterahertz coherent acoustic waves excitation by Josephson junction. , 2011, , .		1
117	The 500–700 GHz spectrometer with superconductive integrated receiver. , 2011, , .		Ο
118	The stability of a terahertz receiver based on a superconducting integrated receiver. Superconductor Science and Technology, 2011, 24, 035003.	3.5	5
119	Balloon-Borne Superconducting Integrated Receiver for Atmospheric Research. IEEE Transactions on Applied Superconductivity, 2011, 21, 612-615.	1.7	22
120	Harmonic mixer based on superconductor-insulator-superconductor tunnel junction. Journal of Communications Technology and Electronics, 2011, 56, 699-707.	0.5	10
121	On the passive electrode signal in X-ray detectors based on superconducting tunnel junctions. Physics of the Solid State, 2011, 53, 1540-1546.	0.6	1
122	Josephson tunnel junctions in a magnetic field gradient. Applied Physics Letters, 2011, 98, 072503.	3.3	3
123	Flux-Flow Oscillator (FFO) Made with the Fluxon Cloning Circuits. NATO Science for Peace and Security Series B: Physics and Biophysics, 2011, , 29-41.	0.3	1
124	Integrated Submm Wave Receiver: Development and Applications. Nanoscience and Technology, 2011, , 263-296.	1.5	1
125	Cryogenic Phase-Locking Loop System Based on SIS Tunnel Junction. Nanoscience and Technology, 2011, , 297-313.	1.5	0
126	Superconducting integrated THz receivers: development and applications. Proceedings of SPIE, 2010, , .	0.8	13

8

#	Article	IF	CITATIONS
127	Development of the physical principles of the design and implementation of a 500–700 GHz spectrometer with a superconducting integrated receiver. Physics of the Solid State, 2010, 52, 2241-2245.	0.6	2
128	Implementation of superconductor/ferromagnet/ superconductor ï€-shifters in superconducting digital and quantum circuits. Nature Physics, 2010, 6, 593-597.	16.7	205
129	Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder. Superconductor Science and Technology, 2010, 23, 045016.	3.5	74
130	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>î´</mml:mi></mml:math> -biased Josephson tunnel junctions. Physical Review B, 2010, 81, .	3.2	4
131	Superconducting Integrated THz Receiver. , 2010, , .		2
132	Static properties of small Josephson tunnel junctions in an oblique magnetic field. Physical Review B, 2009, 79, .	3.2	16
133	A quantitative investigation of the effect of a close-fitting superconducting shield on the coil factor of a solenoid. Superconductor Science and Technology, 2009, 22, 095017.	3.5	2
134	A cryogenic phase locking loop system for a superconducting integrated receiver. Superconductor Science and Technology, 2009, 22, 085012.	3.5	8
135	Millimetron—a large Russian-European submillimeter space observatory. Experimental Astronomy, 2009, 23, 221-244.	3.7	58
136	Noise equivalent temperature difference of a superconducting integrated terahertz receiver. Journal of Communications Technology and Electronics, 2009, 54, 716-720.	0.5	1
137	Spontaneous fluxoid formation in superconducting loops. Physical Review B, 2009, 80, .	3.2	78
138	Bias Voltage Dependence of Quasiparticle Recombination in STJ Detectors with Killed Electrode. Journal of Low Temperature Physics, 2008, 151, 287-291.	1.4	3
139	A cryogenic phase detector for a cooled wideband phase-lock loop system. Journal of Communications Technology and Electronics, 2008, 53, 594-599.	0.5	2
140	Linewidth and DC properties of the flux-flow oscillator with mixed inline-overlap bias. Journal of Physics: Conference Series, 2008, 97, 012291.	0.4	1
141	First light from the Superconducting Integrated Receiver on board Terahertz Limb Sounder TELIS. , 2008, , .		0
142	Static properties of small Josephson tunnel junctions in a transverse magnetic field. Journal of Applied Physics, 2008, 104, .	2.5	19
143	Spontaneous fluxon production in annular Josephson tunnel junctions in the presence of a magnetic field. Physical Review B, 2008, 77, .	3.2	23
144	Quench-induced trapping of magnetic flux in annular Josephson junctions. Journal of Physics: Conference Series, 2008, 97, 012279.	0.4	1

#	Article	IF	CITATIONS
145	Do superconductors change as fast as possible when quenched?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 2871-2880.	3.4	4
146	Model of a long Josephson tunnel junction including surface losses and self-pumping effect. Journal of Physics: Conference Series, 2008, 97, 012303.	0.4	3
147	ESPRIT: a study concept for a far-infrared interferometer in space. , 2008, , .		10
148	Influence of surface losses and the self-pumping effect on current-voltage characteristics of a long Josephson junction. Physical Review B, 2007, 75, .	3.2	39
149	Planar Josephson tunnel junctions in a transverse magnetic field. Journal of Applied Physics, 2007, 102, 093911.	2.5	13
150	Zurek–Kibble Symmetry Breaking Process in Superconducting Rings; Spontaneous Fluxon Formation in Annular Josephson Tunnel Junctions. IEEE Transactions on Applied Superconductivity, 2007, 17, 664-667.	1.7	0
151	Balloon-borne heterodyne stratospheric limb sounder TELIS ready for flight. , 2007, , .		3
152	Design and performance of the flight configuration SIR on TELIS. , 2007, , .		0
153	Superconducting Integrated Submillimeter Receiver for TELIS. IEEE Transactions on Applied Superconductivity, 2007, 17, 336-342.	1.7	30
154	Cryogenic Phase Detector for Superconducting Integrated Receiver. IEEE Transactions on Applied Superconductivity, 2007, 17, 605-608.	1.7	7
155	Superconducting Integrated Receiver Based on Nb-AlN-NbN-Nb Circuits. IEEE Transactions on Applied Superconductivity, 2007, 17, 379-382.	1.7	32
156	Spectral properties of phase-locked flux flow oscillator. Journal of Applied Physics, 2007, 102, 063912.	2.5	14
157	Superconducting tunneling-junction detectors of X-ray radiation. Issues concerning the energy resolution. Semiconductors, 2007, 41, 215-222.	0.5	3
158	On the possibility of application of superconducting tunnel-junction detectors in Mössbauer spectroscopy. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 1302-1304.	0.6	4
159	Superconducting integrated on-board spectrometer of the submillimeter-wave range for atmospheric research. Radiophysics and Quantum Electronics, 2007, 50, 847-851.	0.5	2
160	Superconducting Submm Integrated Receiver for TELIS. Journal of Physics: Conference Series, 2006, 43, 1377-1380.	0.4	0
161	Radiation linewidth of the flux-flow oscillator with integrated self-field coil. Journal of Physics: Conference Series, 2006, 43, 1096-1099.	0.4	0
162	Recombination losses in STJ X-ray detectors with killed electrode. Journal of Physics: Conference Series, 2006, 43, 1311-1314.	0.4	2

#	Article	IF	CITATIONS
163	A pulse-height spectrum from a Mössbauer 57Co source registered with a superconducting tunnel detector. Instruments and Experimental Techniques, 2006, 49, 868-871.	0.5	4
164	Analysis of spectral characteristics of a superconducting integrated receiver. Journal of Communications Technology and Electronics, 2006, 51, 596-603.	0.5	1
165	A planar picoamperemeter based on a superconducting quantum interferometer. Journal of Communications Technology and Electronics, 2006, 51, 1319-1324.	0.5	2
166	The recombination of quasiparticles in x-ray superconducting tunnel detectors. Measurement Techniques, 2006, 49, 830-838.	0.6	1
167	Quasiparticle recombination in STJ X-rays detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 559, 683-685.	1.6	4
168	Zurek-Kibble Mechanism for the Spontaneous Vortex Formation inNbâ^'Al/Alox/NbJosephson Tunnel Junctions: New Theory and Experiment. Physical Review Letters, 2006, 96, 180604.	7.8	83
169	500-650 GHz spectrometer development for TELIS. , 2006, , .		1
170	Experiments on spontaneous vortex formation in Josephson tunnel junctions. Physical Review B, 2006, 74, .	3.2	30
171	Integrated superconducting spectrometer for atmosphere monitoring. Radiophysics and Quantum Electronics, 2005, 48, 844-850.	0.5	2
172	Optimization of the Phase-Locked Flux-Flow Oscillator for the submm Integrated Receiver. IEEE Transactions on Applied Superconductivity, 2005, 15, 964-967.	1.7	41
173	Superconducting Integrated Receiver for TELIS. IEEE Transactions on Applied Superconductivity, 2005, 15, 960-963.	1.7	33
174	The Submm Wave Josephson Flux Flow Oscillator; Linewidth Measurements and Simple Theory. IEEE Transactions on Applied Superconductivity, 2005, 15, 968-971.	1.7	15
175	A superconducting phase-locked local oscillator for a submillimetre integrated receiver. Superconductor Science and Technology, 2004, 17, S127-S131.	3.5	9
176	STJ X-ray detectors with titanium sublayer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 520, 250-253.	1.6	16
177	Externally phase-locked flux flow oscillator for submm integrated receivers: achievements and limitations. IEEE Transactions on Applied Superconductivity, 2003, 13, 1035-1038.	1.7	9
178	Dynamic characteristics of S-band DC SQUID amplifier. IEEE Transactions on Applied Superconductivity, 2003, 13, 1042-1045.	1.7	17
179	High quality Nb-based tunnel junctions for high frequency and digital applications. IEEE Transactions on Applied Superconductivity, 2003, 13, 107-110.	1.7	56
180	New cryogenic heterodyne techniques applied in TELIS: the balloon-borne THz and submillimeter limb sounder for atmospheric research. , 2003, , .		7

#	Article	IF	CITATIONS
181	An integrated receiver with phase-locked superconducting oscillator. IEEE Transactions on Applied Superconductivity, 2003, 13, 684-687.	1.7	12
182	Phase-locked Josephson flux flow local oscillator for sub-mm integrated receivers. Superconductor Science and Technology, 2002, 15, 1701-1705.	3.5	1
183	STJ X-ray detectors with killed electrode. , 2002, , .		4
184	Towards a phase-locked superconducting integrated receiver: prospects and limitations. Physica C: Superconductivity and Its Applications, 2002, 367, 249-255.	1.2	31
185	Line width of Josephson flux flow oscillators. Physica C: Superconductivity and Its Applications, 2002, 372-376, 316-321.	1.2	27
186	Low-noise S-band DC SQUID based amplifier. IEEE Transactions on Applied Superconductivity, 2001, 11, 1239-1242.	1.7	10
187	Superconducting integrated receiver as 400-600 GHz tester for coolable devices. IEEE Transactions on Applied Superconductivity, 2001, 11, 832-835.	1.7	5
188	Radiation linewidth of flux-flow oscillators. Superconductor Science and Technology, 2001, 14, 1040-1043.	3.5	28
189	Submillimeter superconducting integrated receivers: Fabrication and yield. IEEE Transactions on Applied Superconductivity, 2001, 11, 816-819.	1.7	33
190	Superfine resonant structure on IV-curves of long Josephson junction and its influence on flux flow oscillator linewidth. IEEE Transactions on Applied Superconductivity, 2001, 11, 1211-1214.	1.7	16
191	A data acquisition system for test and control of superconducting integrated receivers. IEEE Transactions on Applied Superconductivity, 2001, 11, 840-843.	1.7	19
192	Linewidth and phase locking of Josephson flux-flow oscillators. Physica C: Superconductivity and Its Applications, 2000, 332, 302-307.	1.2	2
193	Phonon effects in STJ X-ray detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 444, 19-22.	1.6	3
194	Integrated superconducting receivers. Superconductor Science and Technology, 2000, 13, R53-R69.	3.5	203
195	Phase locked 270–440 GHz local oscillator based on flux flow in long Josephson tunnel junctions. Review of Scientific Instruments, 2000, 71, 289-293.	1.3	36
196	Forward and backward waves in Cherenkov flux-flow oscillators. Superconductor Science and Technology, 1999, 12, 967-969.	3.5	5
197	Phase locking of 270-440 GHz Josephson flux flow oscillators. Superconductor Science and Technology, 1999, 12, 720-722.	3.5	6
198	Design and fabrication of Cherenkov flux-flow oscillator. IEEE Transactions on Applied Superconductivity, 1999, 9, 3737-3740.	1.7	8

#	Article	IF	CITATIONS
199	A broad band low noise SIS radiometer. IEEE Transactions on Applied Superconductivity, 1999, 9, 4225-4228.	1.7	0
200	Niobium tunnel junctions with multi-layered electrodes. IEEE Transactions on Applied Superconductivity, 1999, 9, 3970-3973.	1.7	12
201	Flux flow oscillators for sub-mm wave integrated receivers. IEEE Transactions on Applied Superconductivity, 1999, 9, 4133-4136.	1.7	32
202	Superconducting chip receivers for imaging application. IEEE Transactions on Applied Superconductivity, 1999, 9, 3773-3776.	1.7	24
203	Back tunneling and phonon exchange effects in superconducting tunnel junction X-ray detectors. Physica B: Condensed Matter, 1999, 263-264, 613-616.	2.7	0
204	Electron and phonon effects in superconducting tunnel detectors of x-radiation. Physics of the Solid State, 1999, 41, 1063-1069.	0.6	7
205	Two-stage S-band DC SQUID amplifier. IEEE Transactions on Applied Superconductivity, 1999, 9, 2902-2905.	1.7	11
206	Fluxon dynamics in long annular Josephson tunnel junctions. Physical Review B, 1998, 57, 5444-5449.	3.2	31
207	Self-pumping effects and radiation linewidth of Josephson flux-flow oscillators. Physical Review B, 1997, 56, 5572-5577.	3.2	84
208	Linewidth of frequency locked flux flow oscillators for sub-mm wave receivers. IEEE Transactions on Applied Superconductivity, 1997, 7, 2905-2908.	1.7	8
209	An integrated 500 GHz receiver with superconducting local oscillator. IEEE Transactions on Applied Superconductivity, 1997, 7, 3589-3592.	1.7	25
210	A dc SQUID based low-noise 4 GHz amplifier. IEEE Transactions on Applied Superconductivity, 1997, 7, 3496-3499.	1.7	18
211	Tunneling of nonequilibrium quasiparticles excited by x-ray quanta in a nonsymmetric superconducting tunnel detector. Low Temperature Physics, 1997, 23, 889-894.	0.6	1
212	Linewidth of submillimeter wave fluxâ€flow oscillators. Applied Physics Letters, 1996, 69, 699-701.	3.3	30
213	First implementation of a superconducting integrated receiver at 450 GHz. Applied Physics Letters, 1996, 68, 1273-1275.	3.3	67
214	Spectral linewidth of autonomous and injection-locked flux-flow oscillators. Physical Review B, 1995, 51, 6536-6541.	3.2	39
215	Properties of autonomous and injection locked flux flow oscillators. IEEE Transactions on Applied Superconductivity, 1995, 5, 2951-2954.	1.7	22
216	Integrated rf amplifier based on dc SQUID. IEEE Transactions on Applied Superconductivity, 1995, 5, 3226-3229.	1.7	19

#	Article	IF	CITATIONS
217	Integrated sub-MM wave receivers. IEEE Transactions on Applied Superconductivity, 1995, 5, 3057-3060.	1.7	27
218	Fourier transform spectrometer studies (300-1000 GHz) of Nb-based quasi-optical SIS detectors. IEEE Transactions on Applied Superconductivity, 1995, 5, 3445-3451.	1.7	2
219	Quasioptical Hilbert transform spectrometer. IEEE Transactions on Applied Superconductivity, 1995, 5, 2686-2689.	1.7	12
220	Superconducting mm-wave attenuator. Physica B: Condensed Matter, 1994, 194-196, 79-80.	2.7	0
221	Integrated flux-flow oscillators for submillimeter wave receivers. Physica B: Condensed Matter, 1994, 194-196, 81-82.	2.7	5
222	<title>Quasi-optical Josephson direct detectors for millimeter wave spectrum analysis</title> . , 1994, 2211, 220.		0
223	Superconducting millimeter wave oscillators and SIS mixers integrated on a chip. IEEE Transactions on Applied Superconductivity, 1993, 3, 2524-2527.	1.7	61
224	Perfectly matched SIS arrays for mm wave receivers. IEEE Transactions on Applied Superconductivity, 1993, 3, 2261-2264.	1.7	2
225	Experimental implementation of SFQ NDRO cells and 8-bit ADC. IEEE Transactions on Applied Superconductivity, 1993, 3, 2662-2665.	1.7	5
226	Integrated receiving structure comprising complementary spiral antenna and tuned parallel biased SIS array. IEEE Transactions on Applied Superconductivity, 1993, 3, 2254-2256.	1.7	3
227	Josephson tunnel junction microwave attenuator. Applied Physics Letters, 1993, 63, 3218-3220.	3.3	4
228	Quasi-optical 0.5 THz SIS receiver with twin junction tuning circuit. , 1993, , .		3
229	Ultra low noise sis-receivers for MM wave radic astronomy. Cryogenics, 1992, 32, 497-500.	1.7	Ο
230	Single flux quantum voltage amplifiers. Cryogenics, 1992, 32, 509-512.	1.7	3
231	Experimental implementation of the eight bit analog-to-digital converter. Cryogenics, 1992, 32, 558-561.	1.7	Ο
232	Superconducting millimeter wave oscillators. Cryogenics, 1992, 32, 501-504.	1.7	0
233	Single flux quantum digital devices. Superconductor Science and Technology, 1991, 4, 555-560.	3.5	5
234	Ultra-low-noise 100 GHz receiver based on parallel biased SIS arrays. Superconductor Science and Technology, 1991, 4, 406-408.	3.5	12

#	Article	IF	CITATIONS
235	Fabrication and properties of superconducting double-barrier structures. Superconductor Science and Technology, 1991, 4, 476-478.	3.5	10
236	DC SQUID RF amplifier with external mm-wave pumping and its testing by SIS junction noise. Superconductor Science and Technology, 1991, 4, 644-646.	3.5	1
237	Single flux quantum quasi-digital voltage amplifier. Superconductor Science and Technology, 1991, 4, 671-673.	3.5	8
238	Experimental implementation of analog-to-digital converter based on the reversible ripple counter. IEEE Transactions on Magnetics, 1991, 27, 2464-2467.	2.1	28
239	Parallel biased SIS-arrays for mm wave mixers: main ideas and experimental verification. IEEE Transactions on Magnetics, 1991, 27, 2642-2645.	2.1	18
240	High sensitive magnetometers and gradiometers based on DC SQUIDs with flux focuser. IEEE Transactions on Magnetics, 1991, 27, 2963-2966.	2.1	14
241	High quality Nb-AlO/sub x/-Nb junctions for microwave receivers and SFQ logic device. IEEE Transactions on Magnetics, 1991, 27, 3141-3144.	2.1	31
242	Superconducting Tunnel Junction Noise Generator and SIS Mixers Noise Measurements. , 1990, , .		2
243	Experimental study of the RSFQ logic elements. IEEE Transactions on Magnetics, 1989, 25, 861-864.	2.1	71
244	SNAP structures with Nb-AlO/sub x/-Nb junctions for MM-wave receivers. IEEE Transactions on Magnetics, 1989, 25, 1060-1063.	2.1	7
245	DC SQUID preamplifier for DC-SQUID magnetometer. IEEE Transactions on Magnetics, 1989, 25, 1182-1185.	2.1	22
246	Josephson junctions with silicon interlayer and arrays. IEEE Transactions on Magnetics, 1987, 23, 680-683.	2.1	5
247	RF-Induced Steps in Resonant Josephson Junctions. Japanese Journal of Applied Physics, 1987, 26, 1639.	1.5	5
248	Experimental realization of a resistive single flux quantum logic circuit. IEEE Transactions on Magnetics, 1987, 23, 755-758.	2.1	32
249	Refractory material SIS junction structures. IEEE Transactions on Magnetics, 1987, 23, 684-687.	2.1	5
250	X-band radiation from Josephson junctions in magnetic field. IEEE Transactions on Magnetics, 1985, 21, 629-631.	2.1	1
251	Magnetic field dependence of microwave radiation in intermediate-length Josephson junctions. Physical Review B, 1984, 30, 2640-2648.	3.2	18
252	Microwave properties of superconducting tunnel structures based on refractory materials. IEEE Transactions on Magnetics, 1983, 19, 968-971.	2.1	3

#	Article	IF	CITATIONS
253	Chaos in Josephson tunnel junctions. IEEE Transactions on Magnetics, 1983, 19, 637-639.	2.1	28
254	Thermal Fluctuations in Resonant Motion of Fluxons on a Josephson Transmission Line: Theory and Experiment. Physical Review Letters, 1982, 49, 1093-1096.	7.8	114
255	The excess current in superconducting microcontacts. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1982, 109-110, 2061-2063.	0.9	0
256	Investigation of niobium oxide-barrier tunnel junctions for use in microwave receiving devices. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1982, 109-110, 2064-2066.	0.9	3
257	Microwave properties of variable thin-film Josephson bridges. IEEE Transactions on Magnetics, 1979, 15, 284-287.	2.1	5
258	Experimental investigation of the microwave-impedance peculiarities of superconducting thin-film bridges. IEEE Transactions on Magnetics, 1977, 13, 228-232.	2.1	8
259	Superlattice harmonic mixer for submillimeter frequency synthesis. , 0, , .		5
260	TELIS: a novel three-channel cryogenic heterodyne receiver for stratospheric research. , 0, , .		2