Willy Susilo

List of Publications by Citations

Source: https://exaly.com/author-pdf/3143554/willy-susilo-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

626 9,561 49 75 h-index g-index citations papers 6.87 653 11,445 2.3 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
626	Identity-Based Remote Data Integrity Checking With Perfect Data Privacy Preserving for Cloud Storage. <i>IEEE Transactions on Information Forensics and Security</i> , 2017 , 12, 767-778	8	246
625	An Efficient Public Auditing Protocol With Novel Dynamic Structure for Cloud Data. <i>IEEE Transactions on Information Forensics and Security</i> , 2017 , 12, 2402-2415	8	231
624	An Efficient Signature Scheme from Bilinear Pairings and Its Applications. <i>Lecture Notes in Computer Science</i> , 2004 , 277-290	0.9	200
623	Public Key Encryption with Keyword Search Revisited. Lecture Notes in Computer Science, 2008, 1249-1	259 .9	185
622	Trapdoor security in a searchable public-key encryption scheme with a designated tester. <i>Journal of Systems and Software</i> , 2010 , 83, 763-771	3.3	178
621	Anonymous and Traceable Group Data Sharing in Cloud Computing. <i>IEEE Transactions on Information Forensics and Security</i> , 2018 , 13, 912-925	8	144
620	Attribute-based signature and its applications 2010 ,		137
619	Secure Remote User Authenticated Key Establishment Protocol for Smart Home Environment. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2020 , 17, 391-406	3.9	136
618	Public key encryption with keyword search secure against keyword guessing attacks without random oracle. <i>Information Sciences</i> , 2013 , 238, 221-241	7.7	133
617	Searchable Attribute-Based Mechanism With Efficient Data Sharing for Secure Cloud Storage. <i>IEEE Transactions on Information Forensics and Security</i> , 2015 , 10, 1981-1992	8	122
616	Certificateless Signature Revisited 2007 , 308-322		115
615	On the Security of Certificateless Signature Schemes from Asiacrypt 2003. <i>Lecture Notes in Computer Science</i> , 2005 , 13-25	0.9	113
614	Privacy-preserving Naive Bayes classifiers secure against the substitution-then-comparison attack. <i>Information Sciences</i> , 2018 , 444, 72-88	7.7	111
613	Constant-Size Dynamic k-TAA. Lecture Notes in Computer Science, 2006, 111-125	0.9	110
612	Fuzzy Identity-Based Data Integrity Auditing for Reliable Cloud Storage Systems. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2019 , 16, 72-83	3.9	109
611	Secure Message Communication Protocol Among Vehicles in Smart City. <i>IEEE Transactions on Vehicular Technology</i> , 2018 , 67, 4359-4373	6.8	99
610	CP-ABE With Constant-Size Keys for Lightweight Devices. <i>IEEE Transactions on Information Forensics and Security</i> , 2014 , 9, 763-771	8	98

(2012-2012)

609	Privacy-Preserving Decentralized Key-Policy Attribute-Based Encryption. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2012 , 23, 2150-2162	3.7	95	
608	Certificateless Public Key Encryption Without Pairing. Lecture Notes in Computer Science, 2005, 134-148	0.9	95	
607	Hidden Ciphertext Policy Attribute-Based Encryption Under Standard Assumptions. <i>IEEE Transactions on Information Forensics and Security</i> , 2016 , 11, 35-45	8	94	
606	A secure and efficient Ciphertext-Policy Attribute-Based Proxy Re-Encryption for cloud data sharing. Future Generation Computer Systems, 2015 , 52, 95-108	7.5	94	
605	Improvements on an authentication scheme for vehicular sensor networks. <i>Expert Systems With Applications</i> , 2014 , 41, 2559-2564	7.8	88	
604	Improving Privacy and Security in Decentralized Ciphertext-Policy Attribute-Based Encryption. <i>IEEE Transactions on Information Forensics and Security</i> , 2015 , 10, 665-678	8	87	
603	Efficient Fair Conditional Payments for Outsourcing Computations. <i>IEEE Transactions on Information Forensics and Security</i> , 2012 , 7, 1687-1694	8	85	
602	Cloud data integrity checking with an identity-based auditing mechanism from RSA. <i>Future Generation Computer Systems</i> , 2016 , 62, 85-91	7.5	77	
601	Secure searchable public key encryption scheme against keyword guessing attacks. <i>IEICE Electronics Express</i> , 2009 , 6, 237-243	0.5	77	
600	Efficient Multi-receiver Identity-Based Encryption and Its Application to Broadcast Encryption. <i>Lecture Notes in Computer Science</i> , 2005 , 380-397	0.9	77	
599	Toward Privacy and Regulation in Blockchain-Based Cryptocurrencies. <i>IEEE Network</i> , 2019 , 33, 111-117	11.4	73	
598	Asymmetric Group Key Agreement. Lecture Notes in Computer Science, 2009, 153-170	0.9	69	
597	Improved searchable public key encryption with designated tester 2009,		67	
596	An Efficient Cloud-Based Revocable Identity-Based Proxy Re-encryption Scheme for Public Clouds Data Sharing. <i>Lecture Notes in Computer Science</i> , 2014 , 257-272	0.9	67	
595	A Secure and Effective Anonymous User Authentication Scheme for Roaming Service in Global Mobility Networks. <i>Wireless Personal Communications</i> , 2013 , 73, 993-1004	1.9	66	
594	Ciphertext-policy attribute-based encryption against key-delegation abuse in fog computing. <i>Future Generation Computer Systems</i> , 2018 , 78, 720-729	7.5	64	
593	A Ciphertext-Policy Attribute-Based Proxy Re-encryption with Chosen-Ciphertext Security 2013,		64	
592	Certificateless Signatures: New Schemes and Security Models. <i>Computer Journal</i> , 2012 , 55, 457-474	1.3	63	

591	Efficient Verifiably Encrypted Signature and Partially Blind Signature from Bilinear Pairings. <i>Lecture Notes in Computer Science</i> , 2003 , 191-204	0.9	62
590	. IEEE Transactions on Industrial Informatics, 2018 , 14, 3712-3723	11.9	61
589	A DFA-Based Functional Proxy Re-Encryption Scheme for Secure Public Cloud Data Sharing. <i>IEEE Transactions on Information Forensics and Security</i> , 2014 , 9, 1667-1680	8	61
588	Privacy-Preserving Ciphertext Multi-Sharing Control for Big Data Storage. <i>IEEE Transactions on Information Forensics and Security</i> , 2015 , 10, 1578-1589	8	59
587	PPO-CPQ: A Privacy-Preserving Optimization of Clinical Pathway Query for E-Healthcare Systems. <i>IEEE Internet of Things Journal</i> , 2020 , 7, 10660-10672	10.7	58
586	Personal health record systems and their security protection. <i>Journal of Medical Systems</i> , 2006 , 30, 309	-151	56
585	A New Payment System for Enhancing Location Privacy of Electric Vehicles. <i>IEEE Transactions on Vehicular Technology</i> , 2014 , 63, 3-18	6.8	55
584	Enhanced privacy of a remote data integrity-checking protocol for secure cloud storage. <i>International Journal of Information Security</i> , 2015 , 14, 307-318	2.8	53
583	Efficient algorithms for secure outsourcing of bilinear pairings. <i>Theoretical Computer Science</i> , 2015 , 562, 112-121	1.1	53
582	Blockchain-based fair payment smart contract for public cloud storage auditing. <i>Information Sciences</i> , 2020 , 519, 348-362	7.7	53
581	Secure and Efficient Cloud Data Deduplication With Randomized Tag. <i>IEEE Transactions on Information Forensics and Security</i> , 2017 , 12, 532-543	8	51
580	Identity-based data storage in cloud computing. Future Generation Computer Systems, 2013, 29, 673-68	1 7.5	50
579	Linkable Ring Signature with Unconditional Anonymity. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2014 , 26, 157-165	4.2	49
578	Dynamic Universal Accumulators for DDH Groups and Their Application to Attribute-Based Anonymous Credential Systems. <i>Lecture Notes in Computer Science</i> , 2009 , 295-308	0.9	49
577	On the Integration of Public Key Data Encryption and Public Key Encryption with Keyword Search. <i>Lecture Notes in Computer Science</i> , 2006 , 217-232	0.9	49
576	Secure sharing and searching for real-time video data in mobile cloud. <i>IEEE Network</i> , 2015 , 29, 46-50	11.4	47
575	Identity-based chameleon hashing and signatures without key exposure. <i>Information Sciences</i> , 2014 , 265, 198-210	7.7	47
574	Secure ID-based linkable and revocable-iff-linked ring signature with constant-size construction. Theoretical Computer Science, 2013, 469, 1-14	1.1	46

(2013-2017)

573	A general framework for secure sharing of personal health records in cloud system. <i>Journal of Computer and System Sciences</i> , 2017 , 90, 46-62	1	45	
572	Identity-Based Strong Designated Verifier Signature Schemes. <i>Lecture Notes in Computer Science</i> , 2004 , 313-324	0.9	45	
571	Adaptively Secure Identity-Based Broadcast Encryption With a Constant-Sized Ciphertext. <i>IEEE Transactions on Information Forensics and Security</i> , 2015 , 10, 679-693	8	44	
570	A New Biocryptosystem-Oriented Security Analysis Framework and Implementation of Multibiometric Cryptosystems Based on Decision Level Fusion. <i>IEEE Transactions on Information Forensics and Security</i> , 2015 , 10, 1193-1206	8	44	
569	Strongly secure certificateless short signatures. <i>Journal of Systems and Software</i> , 2012 , 85, 1409-1417	3.3	44	
568	Efficient Generic On-Line/Off-Line Signatures Without Key Exposure. <i>Lecture Notes in Computer Science</i> , 2007 , 18-30	0.9	43	
567	Designated-server identity-based authenticated encryption with keyword search for encrypted emails. <i>Information Sciences</i> , 2019 , 481, 330-343	7.7	43	
566	Short Linkable Ring Signatures Revisited. <i>Lecture Notes in Computer Science</i> , 2006 , 101-115	0.9	41	
565	. IEEE Transactions on Computers, 2016 , 65, 1992-2004	2.5	40	
564	Chosen-ciphertext secure anonymous conditional proxy re-encryption with keyword search. <i>Theoretical Computer Science</i> , 2012 , 462, 39-58	1.1	40	
563	A Secure Channel Free Public Key Encryption with Keyword Search Scheme without Random Oracle. <i>Lecture Notes in Computer Science</i> , 2009 , 248-258	0.9	39	
562	A Secure and Efficient Authentication Technique for Vehicular Ad-Hoc Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2018 , 67, 5409-5423	6.8	38	
561	Metamorphic Testing for Cybersecurity. <i>Computer</i> , 2016 , 49, 48-55	1.6	38	
560	Revocable Ring Signature. Journal of Computer Science and Technology, 2007, 22, 785-794	1.7	37	
559	Attribute-Based Cloud Data Integrity Auditing for Secure Outsourced Storage. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2020 , 8, 377-390	4.1	37	
558	Secure Keyword Search and Data Sharing Mechanism for Cloud Computing. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2020 , 1-1	3.9	36	
557	\$k\$ -Times Attribute-Based Anonymous Access Control for Cloud Computing. <i>IEEE Transactions on Computers</i> , 2015 , 64, 2595-2608	2.5	35	
556	Securing DSR against wormhole attacks in multirate ad hoc networks. <i>Journal of Network and Computer Applications</i> , 2013 , 36, 582-592	7.9	35	

555	Generating Searchable Public-Key Ciphertexts With Hidden Structures for Fast Keyword Search. <i>IEEE Transactions on Information Forensics and Security</i> , 2015 , 10, 1993-2006	8	34
554	A CCA-secure key-policy attribute-based proxy re-encryption in the adaptive corruption model for dropbox data sharing system. <i>Designs, Codes, and Cryptography,</i> 2018 , 86, 2587-2603	1.2	33
553	Biometrics for electronic health records. <i>Journal of Medical Systems</i> , 2010 , 34, 975-83	5.1	33
552	A systematic literature review on security and privacy of electronic health record systems: technical perspectives. <i>Health Information Management Journal</i> , 2015 , 44, 23-38	2.6	32
551	Certificate-Based Signature: Security Model and Efficient Construction. <i>Lecture Notes in Computer Science</i> , 2007 , 110-125	0.9	32
550	Distance-Based Encryption: How to Embed Fuzziness in Biometric-Based Encryption. <i>IEEE Transactions on Information Forensics and Security</i> , 2016 , 11, 247-257	8	31
549	Efficient Linkable and/or Threshold Ring Signature Without Random Oracles. <i>Computer Journal</i> , 2013 , 56, 407-421	1.3	31
548	Efficient generic on-line/off-line (threshold) signatures without key exposure. <i>Information Sciences</i> , 2008 , 178, 4192-4203	7.7	31
547	RFID Privacy Models Revisited. Lecture Notes in Computer Science, 2008, 251-266	0.9	31
546	On the security of auditing mechanisms for secure cloud storage. <i>Future Generation Computer Systems</i> , 2014 , 30, 127-132	7.5	30
545	Efficient strong designated verifier signature schemes without random oracle or with non-delegatability. <i>International Journal of Information Security</i> , 2011 , 10, 373-385	2.8	30
544	New constructions of fuzzy identity-based encryption 2007,		30
543	Man-in-the-middle attacks on Secure Simple Pairing in Bluetooth standard V5.0 and its countermeasure. <i>Personal and Ubiquitous Computing</i> , 2018 , 22, 55-67	2.1	29
542	Fully Homomorphic Encryption Using Hidden Ideal Lattice. <i>IEEE Transactions on Information Forensics and Security</i> , 2013 , 8, 2127-2137	8	29
541	Constructions of certificate-based signature secure against key replacement attacks*. <i>Journal of Computer Security</i> , 2010 , 18, 421-449	0.8	28
540	Exploiting the Error Correction Mechanism in QR Codes for Secret Sharing. <i>Lecture Notes in Computer Science</i> , 2016 , 409-425	0.9	28
539	Certificate Based (Linkable) Ring Signature 2007 , 79-92		28
538	Analysis and Improvement on a Biometric-Based Remote User Authentication Scheme Using Smart Cards. <i>Wireless Personal Communications</i> , 2015 , 80, 1747-1760	1.9	27

537	Privacy enhanced data outsourcing in the cloud. <i>Journal of Network and Computer Applications</i> , 2012 , 35, 1367-1373	7.9	27	
536	Certificate-Based Signature Schemes without Pairings or Random Oracles. <i>Lecture Notes in Computer Science</i> , 2008 , 285-297	0.9	27	
535	Cryptographic Reverse Firewall via Malleable Smooth Projective Hash Functions. <i>Lecture Notes in Computer Science</i> , 2016 , 844-876	0.9	27	
534	Traceable Monero: Anonymous Cryptocurrency with Enhanced Accountability. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2021 , 18, 679-691	3.9	27	
533	Escrowed Linkability of Ring Signatures and Its Applications. <i>Lecture Notes in Computer Science</i> , 2006 , 175-192	0.9	27	
532	Strong authenticated key exchange with auxiliary inputs. <i>Designs, Codes, and Cryptography</i> , 2017 , 85, 145-173	1.2	26	
531	Ambiguous Optimistic Fair Exchange. Lecture Notes in Computer Science, 2008, 74-89	0.9	26	
530	Blockchain-Based Dynamic Provable Data Possession for Smart Cities. <i>IEEE Internet of Things Journal</i> , 2020 , 7, 4143-4154	10.7	26	
529	Blockchain-based public auditing and secure deduplication with fair arbitration. <i>Information Sciences</i> , 2020 , 541, 409-425	7.7	26	
528	Online/Offline Signatures and Multisignatures for AODV and DSR Routing Security. <i>Lecture Notes in Computer Science</i> , 2006 , 99-110	0.9	25	
527	Online/Offline Provable Data Possession. <i>IEEE Transactions on Information Forensics and Security</i> , 2017 , 12, 1182-1194	8	24	
526	Comments on P ublic Integrity Auditing for Dynamic Data Sharing With Multiuser Modification <i>IEEE Transactions on Information Forensics and Security,</i> 2016 , 11, 658-659	8	24	
525	RS-HABE: Revocable-Storage and Hierarchical Attribute-Based Access Scheme for Secure Sharing of e-Health Records in Public Cloud. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2019 , 1-1	3.9	24	
524	Identity-based strong designated verifier signature revisited. <i>Journal of Systems and Software</i> , 2011 , 84, 120-129	3.3	24	
523	Secure universal designated verifier signature without random oracles. <i>International Journal of Information Security</i> , 2008 , 7, 171-183	2.8	24	
522	Identity-Based Partial Message Recovery Signatures (or How to Shorten ID-Based Signatures). Lecture Notes in Computer Science, 2005 , 45-56	0.9	24	
521	Practical Anonymous Divisible E-Cash from Bounded Accumulators. <i>Lecture Notes in Computer Science</i> , 2008 , 287-301	0.9	24	
520	Practical Multi-Keyword and Boolean Search Over Encrypted E-mail in Cloud Server. <i>IEEE Transactions on Services Computing</i> , 2019 , 1-1	4.8	23	

519	Efficient public key encryption with revocable keyword search. <i>Security and Communication Networks</i> , 2014 , 7, 466-472	1.9	23
518	Constant-Size ID-Based Linkable and Revocable-iff-Linked Ring Signature. <i>Lecture Notes in Computer Science</i> , 2006 , 364-378	0.9	23
517	Identity-Based Proxy Signature from Pairings. Lecture Notes in Computer Science, 2007, 22-31	0.9	23
516	Efficient Optimistic Fair Exchange Secure in the Multi-user Setting and Chosen-Key Model without Random Oracles. <i>Lecture Notes in Computer Science</i> , 2008 , 106-120	0.9	23
515	Interactive three-dimensional visualization of network intrusion detection data for machine learning. Future Generation Computer Systems, 2020 , 102, 292-306	7.5	23
514	Universal Designated Verifier Signature Proof (or How to Efficiently Prove Knowledge of a Signature). <i>Lecture Notes in Computer Science</i> , 2005 , 644-661	0.9	23
513	Identity-based conditional proxy re-encryption with fine grain policy. <i>Computer Standards and Interfaces</i> , 2017 , 52, 1-9	3.5	22
512	A Key-Policy Attribute-Based Proxy Re-Encryption Without Random Oracles: Table 1 <i>Computer Journal</i> , 2016 , 59, 970-982	1.3	22
511	A robust smart card-based anonymous user authentication protocol for wireless communications. <i>Security and Communication Networks</i> , 2014 , 7, 987-993	1.9	22
510	PPDCP-ABE: Privacy-Preserving Decentralized Ciphertext-Policy Attribute-Based Encryption. <i>Lecture Notes in Computer Science</i> , 2014 , 73-90	0.9	22
509	Certificateless threshold signature scheme from bilinear maps. <i>Information Sciences</i> , 2010 , 180, 4714-47	′ <i>7</i> ⁄87	22
508	Proxy Signature Without Random Oracles. <i>Lecture Notes in Computer Science</i> , 2006 , 473-484	0.9	22
507	Non-interactive Deniable Ring Authentication. Lecture Notes in Computer Science, 2004, 386-401	0.9	22
506	Perfect Concurrent Signature Schemes. Lecture Notes in Computer Science, 2004, 14-26	0.9	22
505	A cloud-aided privacy-preserving multi-dimensional data comparison protocol. <i>Information Sciences</i> , 2021 , 545, 739-752	7.7	22
504	An Adaptively CCA-Secure Ciphertext-Policy Attribute-Based Proxy Re-Encryption for Cloud Data Sharing. <i>Lecture Notes in Computer Science</i> , 2014 , 448-461	0.9	21
503	Enhancing Location Privacy for Electric Vehicles (at the Right time). <i>Lecture Notes in Computer Science</i> , 2012 , 397-414	0.9	21
502	Authorized Equality Test on Identity-Based Ciphertexts for Secret Data Sharing via Cloud Storage. <i>IEEE Access</i> , 2019 , 7, 25409-25421	3.5	20

(2013-2011)

501	Interactive conditional proxy re-encryption with fine grain policy. <i>Journal of Systems and Software</i> , 2011 , 84, 2293-2302	3.3	20	
500	Preserving Transparency and Accountability in Optimistic Fair Exchange of Digital Signatures. <i>IEEE Transactions on Information Forensics and Security</i> , 2011 , 6, 498-512	8	20	
499	How to construct identity-based signatures without the key escrow problem. <i>International Journal of Information Security</i> , 2010 , 9, 297-311	2.8	20	
498	Traceable and Retrievable Identity-Based Encryption. Lecture Notes in Computer Science, 2008, 94-110	0.9	20	
497	Server-Aided Verification Signatures: Definitions and New Constructions. <i>Lecture Notes in Computer Science</i> , 2008 , 141-155	0.9	20	
496	Anonymous Identity-Based Broadcast Encryption with Revocation for File Sharing. <i>Lecture Notes in Computer Science</i> , 2016 , 223-239	0.9	20	
495	Revocable Attribute-Based Encryption with Data Integrity in Clouds. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2021 , 1-1	3.9	20	
494	Strongly Leakage-Resilient Authenticated Key Exchange. Lecture Notes in Computer Science, 2016, 19-3	6 0.9	19	
493	Practical Compact E-Cash 2007, 431-445		19	
492	Compact E-Cash from Bounded Accumulator. <i>Lecture Notes in Computer Science</i> , 2006 , 178-195	0.9	19	
491	. IEEE Transactions on Dependable and Secure Computing, 2017 , 14, 211-220	3.9	18	
490	Functionalities of free and open electronic health record systems. <i>International Journal of Technology Assessment in Health Care</i> , 2010 , 26, 382-9	1.8	18	
489	Provably secure server-aided verification signatures. <i>Computers and Mathematics With Applications</i> , 2011 , 61, 1705-1723	2.7	18	
488	Designated Verifier Signature: Definition, Framework and New Constructions. <i>Lecture Notes in Computer Science</i> , 2007 , 1191-1200	0.9	18	
487	A Short Proxy Signature Scheme: Efficient Authentication in the Ubiquitous World. <i>Lecture Notes in Computer Science</i> , 2005 , 480-489	0.9	18	
486	A ciphertext-policy attribute-based proxy re-encryption scheme for data sharing in public clouds. <i>Concurrency Computation Practice and Experience</i> , 2015 , 27, 2004-2027	1.4	17	
485	Recipient Revocable Identity-Based Broadcast Encryption 2016,		17	
484	Constant-Size Dynamic K-Times Anonymous Authentication. <i>IEEE Systems Journal</i> , 2013 , 7, 249-261	4.3	17	

483	A Suite of Non-pairing ID-Based Threshold Ring Signature Schemes with Different Levels of Anonymity (Extended Abstract). <i>Lecture Notes in Computer Science</i> , 2010 , 166-183	0.9	17
482	Universal Designated Verifier Signature Without Delegatability. <i>Lecture Notes in Computer Science</i> , 2006 , 479-498	0.9	17
481	Cloud computing security and privacy: Standards and regulations. <i>Computer Standards and Interfaces</i> , 2017 , 54, 1-2	3.5	16
480	A QR Code Watermarking Approach Based on the DWT-DCT Technique. <i>Lecture Notes in Computer Science</i> , 2017 , 314-331	0.9	16
479	Cloud-based Outsourcing for Enabling Privacy-Preserving Large-scale Non-Negative Matrix Factorization. <i>IEEE Transactions on Services Computing</i> , 2019 , 1-1	4.8	16
478	Subset Membership Encryption and Its Applications to Oblivious Transfer. <i>IEEE Transactions on Information Forensics and Security</i> , 2014 , 9, 1098-1107	8	16
477	Provably Secure Pairing-Based Convertible Undeniable Signature with Short Signature Length. <i>Lecture Notes in Computer Science</i> , 2007 , 367-391	0.9	16
476	Dual Access Control for Cloud-Based Data Storage and Sharing. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2020 , 1-1	3.9	16
475	A Verifiable and Fair Attribute-based Proxy Re-encryption Scheme for Data Sharing in Clouds. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2021 , 1-1	3.9	16
474	On the security of text-based 3D CAPTCHAs. <i>Computers and Security</i> , 2014 , 45, 84-99	4.9	15
473	Provably secure proxy signature scheme from factorization. <i>Mathematical and Computer Modelling</i> , 2012 , 55, 1160-1168		15
472	Publicly verifiable databases with efficient insertion/deletion operations. <i>Journal of Computer and System Sciences</i> , 2017 , 86, 49-58	1	15
471	Security and access of health research data. <i>Journal of Medical Systems</i> , 2007 , 31, 103-7	5.1	15
47º	Convertible identity-based anonymous designated ring signatures. <i>International Journal of Security and Networks</i> , 2006 , 1, 218	0.5	15
469	Anonymous Conditional Proxy Re-encryption without Random Oracle. <i>Lecture Notes in Computer Science</i> , 2009 , 47-60	0.9	15
468	Privacy-Preserving Multi-Keyword Searchable Encryption for Distributed Systems. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2021 , 32, 561-574	3.7	15
467	Short (Identity-Based) Strong Designated Verifier Signature Schemes. <i>Lecture Notes in Computer Science</i> , 2006 , 214-225	0.9	15
466	Provably Secure Identity Based Provable Data Possession. <i>Lecture Notes in Computer Science</i> , 2015 , 310-	-325	14

(2005-2020)

465	A Lightweight Privacy-Preserving Fair Meeting Location Determination Scheme. <i>IEEE Internet of Things Journal</i> , 2020 , 7, 3083-3093	10.7	14
464	Identifying malicious web domains using machine learning techniques with online credibility and performance data 2016 ,		14
463	. IEEE Transactions on Information Forensics and Security, 2017 , 12, 3110-3122	8	14
462	Group-oriented fair exchange of signatures. <i>Information Sciences</i> , 2011 , 181, 3267-3283	7.7	14
461	Attribute-Based Oblivious Access Control. <i>Computer Journal</i> , 2012 , 55, 1202-1215	1.3	14
460	Identity-Based On-Line/Off-Line Signcryption 2008,		14
459	New Privacy Results on Synchronized RFID Authentication Protocols against Tag Tracing. <i>Lecture Notes in Computer Science</i> , 2009 , 321-336	0.9	14
458	Ciphertext-policy attribute-based encryption supporting access policy update and its extension with preserved attributes. <i>International Journal of Information Security</i> , 2018 , 17, 533-548	2.8	14
457	On the Security of Nominative Signatures. <i>Lecture Notes in Computer Science</i> , 2005 , 329-335	0.9	14
456	Identity-Based Universal Designated Verifier Signatures. Lecture Notes in Computer Science, 2005, 825-	83 :49	14
455	A New Signature Scheme Without Random Oracles from Bilinear Pairings. <i>Lecture Notes in Computer Science</i> , 2006 , 67-80	0.9	14
454	Towards Multi-user Searchable Encryption Supporting Boolean Query and Fast Decryption. <i>Lecture Notes in Computer Science</i> , 2017 , 24-38	0.9	13
453	Fully privacy-preserving and revocable ID-based broadcast encryption for data access control in smart city. <i>Personal and Ubiquitous Computing</i> , 2017 , 21, 855-868	2.1	13
452	Leakage Resilient Authenticated Key Exchange Secure in the Auxiliary Input Model. <i>Lecture Notes in Computer Science</i> , 2013 , 204-217	0.9	13
451	Privacy-Preserved Access Control for Cloud Computing 2011 ,		13
450	Practical RFID ownership transfer scheme. <i>Journal of Computer Security</i> , 2011 , 19, 319-341	0.8	13
449	Constant-size ciphertexts in threshold attribute-based encryption without dummy attributes. <i>Information Sciences</i> , 2018 , 429, 349-360	7.7	13
448	Short E-Cash. <i>Lecture Notes in Computer Science</i> , 2005 , 332-346	0.9	13

447	Three-Round Secret Handshakes Based on ElGamal and DSA. <i>Lecture Notes in Computer Science</i> , 2006 , 332-342	0.9	13
446	A generalized attack on RSA type cryptosystems. <i>Theoretical Computer Science</i> , 2017 , 704, 74-81	1.1	12
445	Are the most popular users always trustworthy? The case of Yelp. <i>Electronic Commerce Research and Applications</i> , 2016 , 20, 30-41	4.6	12
444	Cooperative Secret Sharing Using QR Codes and Symmetric Keys. Symmetry, 2018, 10, 95	2.7	12
443	Server-aided signatures verification secure against collusion attack. <i>Information Security Technical Report</i> , 2013 , 17, 46-57		12
442	On the Fault-Detection Capabilities of Adaptive Random Test Case Prioritization: Case Studies with Large Test Suites 2012 ,		12
441	Event-Oriented k-Times Revocable-iff-Linked Group Signatures. <i>Lecture Notes in Computer Science</i> , 2006 , 223-234	0.9	12
440	A New and Efficient Fail-stop Signature Scheme. <i>Computer Journal</i> , 2000 , 43, 430-437	1.3	12
439	Sanitizable Signatures Revisited. Lecture Notes in Computer Science, 2008, 80-97	0.9	12
438	A Generic Scheme of plaintext-checkable database encryption. <i>Information Sciences</i> , 2018 , 429, 88-101	7.7	12
437	A Two-Stage Classifier Approach for Network Intrusion Detection. <i>Lecture Notes in Computer Science</i> , 2018 , 329-340	0.9	12
436	Generic Construction of (Identity-Based) Perfect Concurrent Signatures. <i>Lecture Notes in Computer Science</i> , 2005 , 194-206	0.9	12
435	Efficient Partially Blind Signatures with Provable Security. Lecture Notes in Computer Science, 2006, 345	-359	12
434	Ring Signature with Designated Linkability. <i>Lecture Notes in Computer Science</i> , 2006 , 104-119	0.9	12
433	Privacy-Preserving Certificateless Cloud Auditing with Multiple Users. <i>Wireless Personal Communications</i> , 2019 , 106, 1161-1182	1.9	11
432	Efficient and Fully CCA Secure Conditional Proxy Re-Encryption from Hierarchical Identity-Based Encryption. <i>Computer Journal</i> , 2015 , 58, 2778-2792	1.3	11
431	Attribute Based Broadcast Encryption with Short Ciphertext and Decryption Key. <i>Lecture Notes in Computer Science</i> , 2015 , 252-269	0.9	11
430	Flexible ciphertext-policy attribute-based encryption supporting AND-gate and threshold with short ciphertexts. <i>International Journal of Information Security</i> , 2018 , 17, 463-475	2.8	11

429	Fully secure hidden vector encryption under standard assumptions. <i>Information Sciences</i> , 2013 , 232, 18	8 -/ 2 / 97	11
428	Realizing Fully Secure Unrestricted ID-Based Ring Signature in the Standard Model Based on HIBE. <i>IEEE Transactions on Information Forensics and Security</i> , 2013 , 8, 1909-1922	8	11
427	Threshold ring signature without random oracles 2011 ,		11
426	A Provably Secure Construction of Certificate-Based Encryption from Certificateless Encryption. <i>Computer Journal</i> , 2012 , 55, 1157-1168	1.3	11
425	Deniable Ring Authentication Revisited. Lecture Notes in Computer Science, 2004, 149-163	0.9	11
424	X2Rep: Enhanced Trust Semantics for the XRep Protocol. <i>Lecture Notes in Computer Science</i> , 2004 , 205-	21199	11
423	Multi-party Stand-Alone and Setup-Free Verifiably Committed Signatures 2007, 134-149		11
422	Breaking an Animated CAPTCHA Scheme. Lecture Notes in Computer Science, 2012, 12-29	0.9	11
421	Efficient chameleon hash functions in the enhanced collision resistant model. <i>Information Sciences</i> , 2020 , 510, 155-164	7.7	11
420	PPO-DFK: A Privacy-Preserving Optimization of Distributed Fractional Knapsack With Application in Secure Footballer Configurations. <i>IEEE Systems Journal</i> , 2021 , 15, 759-770	4.3	11
419	Short Designated Verifier Proxy Signature from Pairings. Lecture Notes in Computer Science, 2005, 835-	8449	11
418	Efficient Provably Secure Restrictive Partially Blind Signatures from Bilinear Pairings. <i>Lecture Notes in Computer Science</i> , 2006 , 251-265	0.9	11
417	AAC-OT: Accountable Oblivious Transfer With Access Control. <i>IEEE Transactions on Information Forensics and Security</i> , 2015 , 10, 2502-2514	8	10
416	A Blockchain-based Self-tallying Voting Protocol in Decentralized IoT. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2020 , 1-1	3.9	10
415	Witness-based searchable encryption. <i>Information Sciences</i> , 2018 , 453, 364-378	7.7	10
414	Multirate DelPHI to secure multirate ad hoc networks against wormhole attacks. <i>Journal of Information Security and Applications</i> , 2018 , 39, 31-40	3.5	10
413	Mobile ad-hoc network key management with certificateless cryptography 2008,		10
412	Securing wireless mesh networks with ticket-based authentication 2008,		10

411	Identity-Based Authenticated Broadcast Encryption and Distributed Authenticated Encryption. <i>Lecture Notes in Computer Science</i> , 2004 , 169-181	0.9	10
410	Efficient Dynamic Provable Data Possession with Public Verifiability and Data Privacy. <i>Lecture Notes in Computer Science</i> , 2015 , 395-412	0.9	10
409	Identity-Based Chameleon Hash Scheme without Key Exposure. <i>Lecture Notes in Computer Science</i> , 2010 , 200-215	0.9	10
408	Enhancing the Perceived Visual Quality of a Size Invariant Visual Cryptography Scheme. <i>Lecture Notes in Computer Science</i> , 2012 , 10-21	0.9	10
407	Restricted Universal Designated Verifier Signature. Lecture Notes in Computer Science, 2006, 874-882	0.9	10
406	Certificateless designated verifier signature revisited: achieving a concrete scheme in the standard model. <i>International Journal of Information Security</i> , 2019 , 18, 619-635	2.8	9
405	A short ID-based proxy signature scheme. International Journal of Communication Systems, 2016, 29, 85	91873	9
404	Efficient Privacy-Preserving Charging Station Reservation System for Electric Vehicles. <i>Computer Journal</i> , 2016 , 59, 1040-1053	1.3	9
403	Hierarchical conditional proxy re-encryption. Computer Standards and Interfaces, 2012, 34, 380-389	3.5	9
402	A new efficient optimistic fair exchange protocol without random oracles. <i>International Journal of Information Security</i> , 2012 , 11, 53-63	2.8	9
401	Cryptanalaysis of an EPCC1G2 Standard Compliant Ownership Transfer Scheme. <i>Wireless Personal Communications</i> , 2013 , 72, 245-258	1.9	9
400	Membership Encryption and Its Applications. Lecture Notes in Computer Science, 2013, 219-234	0.9	9
399	Efficient Designated Confirmer Signature and DCS-Based Ambiguous Optimistic Fair Exchange. <i>IEEE Transactions on Information Forensics and Security</i> , 2011 , 6, 1233-1247	8	9
398	A Generic Construction of Identity-Based Online/Offline Signcryption 2008,		9
397	(Convertible) Undeniable Signatures Without Random Oracles. <i>Lecture Notes in Computer Science</i> , 2007 , 83-97	0.9	9
396	Improved Identity-Based Online/Offline Encryption. Lecture Notes in Computer Science, 2015, 160-173	0.9	9
395	Privacy-Preserving Cloud Auditing with Multiple Uploaders. <i>Lecture Notes in Computer Science</i> , 2016 , 224-237	0.9	9
394	Token-Controlled Public Key Encryption. Lecture Notes in Computer Science, 2005, 386-397	0.9	9

393	A Digital Signature Scheme Based on CVP [2008 , 288-307		9	
392	STE3D-CAP: Stereoscopic 3D CAPTCHA. <i>Lecture Notes in Computer Science</i> , 2010 , 221-240	0.9	9	
391	Identity-Based Traitor Tracing with Short Private Key and Short Ciphertext. <i>Lecture Notes in Computer Science</i> , 2012 , 609-626	0.9	9	
390	An Efficient Static Blind Ring Signature Scheme. Lecture Notes in Computer Science, 2006, 410-423	0.9	9	
389	An efficient and provably secure RFID grouping proof protocol 2017,		8	
388	Universal designated verifier signature scheme with non-delegatability in the standard model. <i>Information Sciences</i> , 2019 , 479, 321-334	7.7	8	
387	LLL for ideal lattices: re-evaluation of the security of Gentry Halevi FHE scheme. <i>Designs, Codes, and Cryptography</i> , 2015 , 76, 325-344	1.2	8	
386	Publicly Verifiable Databases with All Efficient Updating Operations. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2020 , 1-1	4.2	8	
385	Cryptanalysis of RSA-type cryptosystems based on Lucas sequences, Gaussian integers and elliptic curves. <i>Journal of Information Security and Applications</i> , 2018 , 40, 193-198	3.5	8	
384	A Lattice-Based Public Key Encryption with Equality Test in Standard Model. <i>Lecture Notes in Computer Science</i> , 2019 , 138-155	0.9	8	
383	The construction of ambiguous optimistic fair exchange from designated confirmer signature without random oracles. <i>Information Sciences</i> , 2013 , 228, 222-238	7.7	8	
382	Optimal Security Reductions for Unique Signatures: Bypassing Impossibilities with a Counterexample. <i>Lecture Notes in Computer Science</i> , 2017 , 517-547	0.9	8	
381	Short fail-stop signature scheme based on factorization and discrete logarithm assumptions. <i>Theoretical Computer Science</i> , 2009 , 410, 736-744	1.1	8	
380	P2OFE: Privacy-Preserving Optimistic Fair Exchange of Digital Signatures. <i>Lecture Notes in Computer Science</i> , 2014 , 367-384	0.9	8	
379	A CAPTCHA Scheme Based on the Identification of Character Locations. <i>Lecture Notes in Computer Science</i> , 2014 , 60-74	0.9	8	
378	Formal Definition and Construction of Nominative Signature. <i>Lecture Notes in Computer Science</i> , 2007 , 57-68	0.9	8	
377	Constructing Strong KEM from Weak KEM (or How to Revive the KEM/DEM Framework). <i>Lecture Notes in Computer Science</i> , 2008 , 358-374	0.9	8	
376	Broadcast Attacks against Lattice-Based Cryptosystems. Lecture Notes in Computer Science, 2009, 456-4	172 9	8	

375	AniCAP: An Animated 3D CAPTCHA Scheme Based on Motion Parallax. <i>Lecture Notes in Computer Science</i> , 2011 , 255-271	0.9	8
374	On the CCA-1 Security of Somewhat Homomorphic Encryption over the Integers. <i>Lecture Notes in Computer Science</i> , 2012 , 353-368	0.9	8
373	Security and Privacy for Edge Intelligence in 5G and Beyond Networks: Challenges and Solutions. <i>IEEE Wireless Communications</i> , 2021 , 28, 63-69	13.4	8
372	CAPTCHA Design and Security Issues 2019 , 69-92		8
371	PLC Code-Level Vulnerabilities 2018 ,		8
370	Broadcast encryption with dealership. International Journal of Information Security, 2016, 15, 271-283	2.8	7
369	Fine-grained information flow control using attributes. <i>Information Sciences</i> , 2019 , 484, 167-182	7.7	7
368	Asymmetric Cross-cryptosystem Re-encryption Applicable to Efficient and Secure Mobile Access to Outsourced Data 2015 ,		7
367	Revocable identity-based encryption with server-aided ciphertext evolution. <i>Theoretical Computer Science</i> , 2020 , 815, 11-24	1.1	7
366	Privacy-enhanced attribute-based private information retrieval. <i>Information Sciences</i> , 2018 , 454-455, 275-291	7.7	7
365	Generally Hybrid Proxy Re-Encryption 2016 ,		7
364	Obfuscating Re-encryption Algorithm With Flexible and Controllable Multi-Hop on Untrusted Outsourcing Server. <i>IEEE Access</i> , 2017 , 5, 26419-26434	3.5	7
363	A resilient identity-based authenticated key exchange protocol. <i>Security and Communication Networks</i> , 2015 , 8, 2279-2290	1.9	7
362	Distributed Privacy-Preserving Secure Aggregation in Vehicular Communication 2011,		7
361	A Provable Secure ID-Based Explicit Authenticated Key Agreement Protocol Without Random Oracles. <i>Journal of Computer Science and Technology</i> , 2008 , 23, 832-842	1.7	7
360	Ad Hoc Group Signatures. Lecture Notes in Computer Science, 2006, 120-135	0.9	7
359	Towards Enhanced Security for Certificateless Public-Key Authenticated Encryption with Keyword Search. <i>Lecture Notes in Computer Science</i> , 2019 , 113-129	0.9	7
358	Lattice-Based IBE with Equality Test in Standard Model. <i>Lecture Notes in Computer Science</i> , 2019 , 19-40	0.9	7

357	Towards Efficient Fully Randomized Message-Locked Encryption. <i>Lecture Notes in Computer Science</i> , 2016 , 361-375	0.9	7
356	A New Attack on Three Variants of the RSA Cryptosystem. <i>Lecture Notes in Computer Science</i> , 2016 , 258	3-2638	7
355	Authentication and Transaction Verification Using QR Codes with a Mobile Device. <i>Lecture Notes in Computer Science</i> , 2016 , 437-451	0.9	7
354	Ranking Attack Graphs with Graph Neural Networks. <i>Lecture Notes in Computer Science</i> , 2009 , 345-359	0.9	7
353	On the Security of NOEKEON against Side Channel Cube Attacks. <i>Lecture Notes in Computer Science</i> , 2010 , 45-55	0.9	7
352	A New Construction of Designated Confirmer Signature and Its Application to Optimistic Fair Exchange. <i>Lecture Notes in Computer Science</i> , 2010 , 41-61	0.9	7
351	Breaking a 3D-Based CAPTCHA Scheme. Lecture Notes in Computer Science, 2012, 391-405	0.9	7
350	Divide and capture: An improved cryptanalysis of the encryption standard algorithm RSA. <i>Computer Standards and Interfaces</i> , 2021 , 74, 103470	3.5	7
349	Introduction to Security Reduction 2018,		7
348	Multi-party Concurrent Signatures. <i>Lecture Notes in Computer Science</i> , 2006 , 131-145	0.9	7
347	Efficient Certificateless Signcryption in the Standard Model: Revisiting Luo and Wan Scheme from Wireless Personal Communications (2018). <i>Computer Journal</i> , 2019 , 62, 1178-1193	1.3	6
347 346	5 71	1.3 7.7	6
	Wireless Personal Communications (2018). Computer Journal, 2019, 62, 1178-1193		
346	Wireless Personal Communications (2018). <i>Computer Journal</i> , 2019 , 62, 1178-1193 Identity-based quotable ring signature. <i>Information Sciences</i> , 2015 , 321, 71-89 A Tag Based Encoding: An Efficient Encoding for Predicate Encryption in Prime Order Groups.	7.7	6
346 345	Wireless Personal Communications (2018). <i>Computer Journal</i> , 2019 , 62, 1178-1193 Identity-based quotable ring signature. <i>Information Sciences</i> , 2015 , 321, 71-89 A Tag Based Encoding: An Efficient Encoding for Predicate Encryption in Prime Order Groups. <i>Lecture Notes in Computer Science</i> , 2016 , 3-22 Public Cloud Data Auditing with Practical Key Update and Zero Knowledge Privacy. <i>Lecture Notes in</i>	7.7	6
346 345 344	Wireless Personal Communications (2018). <i>Computer Journal</i> , 2019 , 62, 1178-1193 Identity-based quotable ring signature. <i>Information Sciences</i> , 2015 , 321, 71-89 A Tag Based Encoding: An Efficient Encoding for Predicate Encryption in Prime Order Groups. <i>Lecture Notes in Computer Science</i> , 2016 , 3-22 Public Cloud Data Auditing with Practical Key Update and Zero Knowledge Privacy. <i>Lecture Notes in Computer Science</i> , 2016 , 389-405 Identity-Based Broadcast Encryption with Outsourced Partial Decryption for Hybrid Security	7.7	6 6
346345344343	Wireless Personal Communications (2018). <i>Computer Journal</i> , 2019 , 62, 1178-1193 Identity-based quotable ring signature. <i>Information Sciences</i> , 2015 , 321, 71-89 A Tag Based Encoding: An Efficient Encoding for Predicate Encryption in Prime Order Groups. <i>Lecture Notes in Computer Science</i> , 2016 , 3-22 Public Cloud Data Auditing with Practical Key Update and Zero Knowledge Privacy. <i>Lecture Notes in Computer Science</i> , 2016 , 389-405 Identity-Based Broadcast Encryption with Outsourced Partial Decryption for Hybrid Security Models in Edge Computing 2019 , Public Key Authenticated Encryption With Designated Equality Test and its Applications in	7.7 0.9 0.9	6666

339	Fuzzy Extractors for Biometric Identification 2017,		6
338	Dynamic Provable Data Possession Protocols with Public Verifiability and Data Privacy. <i>Lecture Notes in Computer Science</i> , 2017 , 485-505	0.9	6
337	Shared RFID ownership transfer protocols. <i>Computer Standards and Interfaces</i> , 2015 , 42, 95-104	3.5	6
336	Towards a cryptographic treatment of publish/subscribe systems1. <i>Journal of Computer Security</i> , 2014 , 22, 33-67	0.8	6
335	Privacy-Preserving Authorized RFID Authentication Protocols. <i>Lecture Notes in Computer Science</i> , 2014 , 108-122	0.9	6
334	Forward Secure Attribute-Based Signatures. Lecture Notes in Computer Science, 2012, 167-177	0.9	6
333	Securing electronic health records with broadcast encryption schemes. <i>International Journal of Electronic Healthcare</i> , 2006 , 2, 175-84	Ο	6
332	Compact sequential aggregate signatures 2007 ,		6
331	Identity-Based Broadcasting. Lecture Notes in Computer Science, 2003, 177-190	0.9	6
330	Authenticated AODV Routing Protocol Using One-Time Signature and Transitive Signature Schemes. <i>Journal of Networks</i> , 2006 , 1,		6
329	Efficient Hidden Vector Encryption with Constant-Size Ciphertext. <i>Lecture Notes in Computer Science</i> , 2014 , 472-487	0.9	6
328	Dynamic Searchable Symmetric Encryption with Physical Deletion and Small Leakage. <i>Lecture Notes in Computer Science</i> , 2017 , 207-226	0.9	6
327	A New Variant of the Cramer-Shoup KEM Secure against Chosen Ciphertext Attack. <i>Lecture Notes in Computer Science</i> , 2009 , 143-155	0.9	6
326	Identity-Based Identification Scheme Secure against Concurrent-Reset Attacks without Random Oracles. <i>Lecture Notes in Computer Science</i> , 2009 , 94-108	0.9	6
325	Online/Offline Ring Signature Scheme. Lecture Notes in Computer Science, 2009, 80-90	0.9	6
324	Enhanced Security Notions for Dedicated-Key Hash Functions: Definitions and Relationships. <i>Lecture Notes in Computer Science</i> , 2010 , 192-211	0.9	6
323	Proof-of-Knowledge of Representation of Committed Value and Its Applications. <i>Lecture Notes in Computer Science</i> , 2010 , 352-369	0.9	6
322	Reaction Attack on Outsourced Computing with Fully Homomorphic Encryption Schemes. <i>Lecture Notes in Computer Science</i> , 2012 , 419-436	0.9	6

321	Efficient Non-interactive Range Proof. Lecture Notes in Computer Science, 2009, 138-147	0.9	6
320	Publicly Verifiable Privacy-Preserving Group Decryption. Lecture Notes in Computer Science, 2009, 72-83	0.9	6
319	Data Security Storage Model of the Internet of Things Based on Blockchain. <i>Computer Systems Science and Engineering</i> , 2021 , 36, 213-224	3.9	6
318	Blockchain-based secure deduplication and shared auditing in decentralized storage. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2021 , 1-1	3.9	6
317	Efficient Authentication Scheme for Routing in Mobile Ad Hoc Networks. <i>Lecture Notes in Computer Science</i> , 2005 , 854-863	0.9	6
316	An Efficient KP-ABE with Short Ciphertexts in Prime OrderGroups under Standard Assumption 2017 ,		5
315	Strongly leakage resilient authenticated key exchange, revisited. <i>Designs, Codes, and Cryptography</i> , 2019 , 87, 2885-2911	1.2	5
314	A short identity-based proxy ring signature scheme from RSA. <i>Computer Standards and Interfaces</i> , 2015 , 38, 144-151	3.5	5
313	DO-RA: Data-oriented runtime attestation for IoT devices. <i>Computers and Security</i> , 2020 , 97, 101945	4.9	5
312	A cost-effective software testing strategy employing online feedback information. <i>Information Sciences</i> , 2018 , 422, 318-335	7.7	5
311	ABKS-CSC: attribute-based keyword search with constant-size ciphertexts. <i>Security and Communication Networks</i> , 2016 , 9, 5003-5015	1.9	5
310	A note on the strong authenticated key exchange with auxiliary inputs. <i>Designs, Codes, and Cryptography</i> , 2017 , 85, 175-178	1.2	5
309	Sequence aware functional encryption and its application in searchable encryption. <i>Journal of Information Security and Applications</i> , 2017 , 35, 106-118	3.5	5
308	File sharing in cloud computing using win stay lose shift strategy. <i>International Journal of High Performance Computing and Networking</i> , 2015 , 8, 154	1	5
307	Efficient oblivious transfers with access control. <i>Computers and Mathematics With Applications</i> , 2012 , 63, 827-837	2.7	5
306	Identity-based trapdoor mercurial commitments and applications. <i>Theoretical Computer Science</i> , 2011 , 412, 5498-5512	1.1	5
305	CAPTCHA Challenges for Massively Multiplayer Online Games: Mini-game CAPTCHAs 2010 ,		5
304	Extended cubes 2011 ,		5

303	Server-aided signatures verification secure against collusion attack 2011,		5
302	Comparing and debugging firewall rule tables. <i>IET Information Security</i> , 2007 , 1, 143	1.4	5
301	Efficient ID-Based Authenticated Group Key Agreement from Bilinear Pairings. <i>Lecture Notes in Computer Science</i> , 2006 , 521-532	0.9	5
300	Puncturable Encryption: A Generic Construction from Delegatable Fully Key-Homomorphic Encryption. <i>Lecture Notes in Computer Science</i> , 2020 , 107-127	0.9	5
299	Puncturable Proxy Re-Encryption Supporting to Group Messaging Service. <i>Lecture Notes in Computer Science</i> , 2019 , 215-233	0.9	5
298	Efficient Semi-static Secure Broadcast Encryption Scheme. <i>Lecture Notes in Computer Science</i> , 2014 , 62-	76 .9	5
297	New Insight to Preserve Online Survey Accuracy and Privacy in Big Data Era. <i>Lecture Notes in Computer Science</i> , 2014 , 182-199	0.9	5
296	Jhanwar-Barua Identity-Based Encryption Revisited. Lecture Notes in Computer Science, 2014, 271-284	0.9	5
295	Provably Secure Identity-Based Undeniable Signatures with Selective and Universal Convertibility. <i>Lecture Notes in Computer Science</i> , 2007 , 25-39	0.9	5
294	Certificate-Based Signatures: New Definitions and a Generic Construction from Certificateless Signatures. <i>Lecture Notes in Computer Science</i> , 2009 , 99-114	0.9	5
293	Further Observations on Optimistic Fair Exchange Protocols in the Multi-user Setting. <i>Lecture Notes in Computer Science</i> , 2010 , 124-141	0.9	5
292	Improving BDD Cryptosystems in General Lattices. Lecture Notes in Computer Science, 2011, 152-167	0.9	5
291	Efficient Escrow-Free Identity-Based Signature. Lecture Notes in Computer Science, 2012, 161-174	0.9	5
290	Perfect Ambiguous Optimistic Fair Exchange. Lecture Notes in Computer Science, 2012, 142-153	0.9	5
289	Enhanced Target Collision Resistant Hash Functions Revisited. <i>Lecture Notes in Computer Science</i> , 2009 , 327-344	0.9	5
288	A Generic Construction of Dynamic Single Sign-on with Strong Security. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2010 , 181-198	0.2	5
287	Certificateless aggregate signature scheme secure against fully chosen-key attacks. <i>Information Sciences</i> , 2020 , 514, 288-301	7.7	5
286	Collusion-resistant identity-based Proxy Re-encryption: Lattice-based constructions in Standard Model. <i>Theoretical Computer Science</i> , 2021 , 871, 16-29	1.1	5

285	Leakage-resilient ring signature schemes. <i>Theoretical Computer Science</i> , 2019 , 759, 1-13	1.1	5
284	. IEEE Access, 2018 , 6, 56977-56983	3.5	5
283	Security Analysis of Michael: The IEEE 802.11i Message Integrity Code. <i>Lecture Notes in Computer Science</i> , 2005 , 423-432	0.9	5
282	A Visual One-Time Password Authentication Scheme Using Mobile Devices. <i>Lecture Notes in Computer Science</i> , 2015 , 243-257	0.9	4
281	Ambiguous optimistic fair exchange: Definition and constructions. <i>Theoretical Computer Science</i> , 2015 , 562, 177-193	1.1	4
280	Aggregatable Certificateless Designated Verifier Signature. <i>IEEE Access</i> , 2020 , 8, 95019-95031	3.5	4
279	Logarithmic size ring signatures without random oracles. IET Information Security, 2016, 10, 1-7	1.4	4
278	Subversion in Practice: How to Efficiently Undermine Signatures. <i>IEEE Access</i> , 2019 , 7, 68799-68811	3.5	4
277	Programmable logic controllers based systems (PLC-BS): vulnerabilities and threats. <i>SN Applied Sciences</i> , 2019 , 1, 1	1.8	4
276	Privacy-Preserving Mutual Authentication in RFID with Designated Readers. <i>Wireless Personal Communications</i> , 2017 , 96, 4819-4845	1.9	4
275	Policy-controlled signatures and their applications. <i>Computer Standards and Interfaces</i> , 2017 , 50, 26-41	3.5	4
274	Vulnerabilities of an ECC-based RFID authentication scheme. <i>Security and Communication Networks</i> , 2015 , 8, 3262-3270	1.9	4
273	Server-Aided Signature Verification for Lightweight Devices. <i>Computer Journal</i> , 2014 , 57, 481-493	1.3	4
272	Optimistic Fair Exchange with Strong Resolution-Ambiguity. <i>IEEE Journal on Selected Areas in Communications</i> , 2011 , 29, 1491-1502	14.2	4
271	On the security of the identity-based encryption based on DHIES from ASIACCS 2010 2011 ,		4
270	Self-organised group key management for ad hoc networks 2006 ,		4
269	Designated group credentials 2006 ,		4
268	Cryptanalysis on Two Certificateless Signature Schemes. <i>International Journal of Computers, Communications and Control</i> , 2014 , 5, 586	3.6	4

267	Inspecting TLS Anytime Anywhere: A New Approach to TLS Interception 2020,		4
266	X2BT Trusted Reputation System: A Robust Mechanism for P2P Networks. <i>Lecture Notes in Computer Science</i> , 2006 , 364-380	0.9	4
265	Lattice-Based IBE with Equality Test Supporting Flexible Authorization in the Standard Model. Lecture Notes in Computer Science, 2020 , 624-643	0.9	4
264	Fault Analysis of the KATAN Family of Block Ciphers. Lecture Notes in Computer Science, 2012, 319-336	0.9	4
263	(Strong) Multi-Designated Verifiers Signatures Secure against Rogue Key Attack. <i>Lecture Notes in Computer Science</i> , 2012 , 334-347	0.9	4
262	Relations among Privacy Notions for Signcryption and Key Invisible Bign-then-Encrypt (Lecture Notes in Computer Science, 2013, 187-202)	0.9	4
261	A Multivariate Blind Ring Signature Scheme. <i>Computer Journal</i> , 2020 , 63, 1194-1202	1.3	4
260	Accountable authority identity-based broadcast encryption with constant-size private keys and ciphertexts. <i>Theoretical Computer Science</i> , 2020 , 809, 73-87	1.1	4
259	A Secure Cloud Data Sharing Protocol for Enterprise Supporting Hierarchical Keyword Search. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2020 , 1-1	3.9	4
258	Robust Authentication Protocol for Dynamic Charging System of Electric Vehicles. <i>IEEE Transactions on Vehicular Technology</i> , 2021 , 1-1	6.8	4
257	An efficient multivariate threshold ring signature scheme. <i>Computer Standards and Interfaces</i> , 2021 , 74, 103489	3.5	4
256	Privacy-Preserving Federated Learning in Medical Diagnosis with Homomorphic Re-Encryption. <i>Computer Standards and Interfaces</i> , 2021 , 103583	3.5	4
255	Generic server-aided secure multi-party computation in cloud computing. <i>Computer Standards and Interfaces</i> , 2022 , 79, 103552	3.5	4
254	Software Engineering for Internet of Things. IEEE Transactions on Software Engineering, 2021, 1-1	3.5	4
253	On the Internal Structure of Alpha-MAC. Lecture Notes in Computer Science, 2006, 271-285	0.9	4
252	An Efficient Key-Policy Attribute-Based Searchable Encryption in Prime-Order Groups. <i>Lecture Notes in Computer Science</i> , 2017 , 39-56	0.9	3
251	A Secure and Efficient Data Sharing and Searching Scheme in Wireless Sensor Networks. <i>Sensors</i> , 2019 , 19,	3.8	3
250	A provably secure identity-based proxy ring signature based on RSA. <i>Security and Communication Networks</i> , 2015 , 8, 1223-1236	1.9	3

249	An Identity-Based Multi-Proxy Multi-Signature Scheme Without Bilinear Pairings and its Variants. <i>Computer Journal</i> , 2015 , 58, 1021-1039	1.3	3
248	Harnessing Policy Authenticity for Hidden Ciphertext Policy Attribute Based Encryption. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2020 , 1-1	3.9	3
247	PKE-MET: Public-Key Encryption with Multi-Ciphertext Equality Test in Cloud Computing. <i>IEEE Transactions on Cloud Computing</i> , 2020 , 1-1	3.3	3
246	SAKE: scalable authenticated key exchange for mobile e-health networks. <i>Security and Communication Networks</i> , 2016 , 9, 2754-2765	1.9	3
245	Multi-designated verifiers signature schemes with threshold verifiability: generic pattern and a concrete scheme in the standard model. <i>IET Information Security</i> , 2019 , 13, 459-468	1.4	3
244	Anonymous Single Sign-On Schemes Transformed from Group Signatures 2013 ,		3
243	RFID Ownership Transfer with Positive Secrecy Capacity Channels. Sensors, 2016, 17,	3.8	3
242	An Efficient Variant of Boneh-Gentry-Hamburg Identity-Based Encryption Without Pairing. <i>Lecture Notes in Computer Science</i> , 2015 , 257-268	0.9	3
241	Attribute-Based Data Transfer with Filtering Scheme in Cloud Computing. <i>Computer Journal</i> , 2014 , 57, 579-591	1.3	3
240	(Strong) multidesignated verifiers signatures secure against rogue key attack. <i>Concurrency Computation Practice and Experience</i> , 2014 , 26, 1574-1592	1.4	3
239	Deniability and forward secrecy of one-round authenticated key exchange. <i>Journal of Supercomputing</i> , 2014 , 67, 671-690	2.5	3
238	Efficient Trapdoor-Based Client Puzzle Against DoS Attacks 2010 , 229-249		3
237	2009,		3
236	Identity-based anonymous designated ring signatures 2006,		3
235	Information security and privacy of health data. <i>International Journal of Healthcare Technology and Management</i> , 2006 , 7, 492	0.3	3
234	Provably secure fail-stop signature schemes based on RSA. <i>International Journal of Wireless and Mobile Computing</i> , 2005 , 1, 53	0.4	3
233	Tripartite Concurrent Signatures. IFIP Advances in Information and Communication Technology, 2005, 42	5 01∮ 1	3
232	Remark on self-certified group-oriented cryptosystem without combiner. <i>Electronics Letters</i> , 1999 , 35, 1539	1.1	3

231	Efficient Post-quantum Identity-based Encryption with Equality Test 2020 ,		3
230	A model-driven approach to reengineering processes in cloud computing. <i>Information and Software Technology</i> , 2022 , 144, 106795	3.4	3
229	Fail-Stop Signature for Long Messages (Extended Abstract). <i>Lecture Notes in Computer Science</i> , 2000 , 165-177	0.9	3
228	An Efficient Fail-Stop Signature Scheme Based on Factorization. <i>Lecture Notes in Computer Science</i> , 2003 , 62-74	0.9	3
227	Stateful Public-Key Encryption: A Security Solution for Resource-Constrained Environment 2019 , 1-22		3
226	A Blind Ring Signature Based on the Short Integer Solution Problem. <i>Lecture Notes in Computer Science</i> , 2020 , 92-111	0.9	3
225	A survey of remote attestation in Internet of Things: Attacks, countermeasures, and prospects. <i>Computers and Security</i> , 2022 , 112, 102498	4.9	3
224	Broadcast Authenticated Encryption with Keyword Search. Lecture Notes in Computer Science, 2021 , 19	3-243	3
223	Identity-Based Unidirectional Proxy Re-encryption in Standard Model: A Lattice-Based Construction. <i>Lecture Notes in Computer Science</i> , 2020 , 245-257	0.9	3
222	Achieving Mobility and Anonymity in IP-Based Networks 2007 , 60-79		3
222	Achieving Mobility and Anonymity in IP-Based Networks 2007 , 60-79 How to Prove Security of a Signature with a Tighter Security Reduction. <i>Lecture Notes in Computer Science</i> , 2009 , 90-103	0.9	3
	How to Prove Security of a Signature with a Tighter Security Reduction. <i>Lecture Notes in Computer</i>	0.9	
221	How to Prove Security of a Signature with a Tighter Security Reduction. <i>Lecture Notes in Computer Science</i> , 2009 , 90-103 Universal Designated Verifier Signatures with Threshold-Signers. <i>Lecture Notes in Computer Science</i> ,		
221	How to Prove Security of a Signature with a Tighter Security Reduction. <i>Lecture Notes in Computer Science</i> , 2009 , 90-103 Universal Designated Verifier Signatures with Threshold-Signers. <i>Lecture Notes in Computer Science</i> , 2009 , 89-109 Improvement of Lattice-Based Cryptography Using CRT. <i>Lecture Notes of the Institute for Computer</i>	0.9	3
221 220 219	How to Prove Security of a Signature with a Tighter Security Reduction. <i>Lecture Notes in Computer Science</i> , 2009 , 90-103 Universal Designated Verifier Signatures with Threshold-Signers. <i>Lecture Notes in Computer Science</i> , 2009 , 89-109 Improvement of Lattice-Based Cryptography Using CRT. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2010 , 275-282 Short Generic Transformation to Strongly Unforgeable Signature in the Standard Model. <i>Lecture</i>	0.9	3 3 3
221 220 219 218	How to Prove Security of a Signature with a Tighter Security Reduction. <i>Lecture Notes in Computer Science</i> , 2009 , 90-103 Universal Designated Verifier Signatures with Threshold-Signers. <i>Lecture Notes in Computer Science</i> , 2009 , 89-109 Improvement of Lattice-Based Cryptography Using CRT. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2010 , 275-282 Short Generic Transformation to Strongly Unforgeable Signature in the Standard Model. <i>Lecture Notes in Computer Science</i> , 2010 , 168-181	0.9	3 3 3
221 220 219 218 217	How to Prove Security of a Signature with a Tighter Security Reduction. Lecture Notes in Computer Science, 2009, 90-103 Universal Designated Verifier Signatures with Threshold-Signers. Lecture Notes in Computer Science, 2009, 89-109 Improvement of Lattice-Based Cryptography Using CRT. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2010, 275-282 Short Generic Transformation to Strongly Unforgeable Signature in the Standard Model. Lecture Notes in Computer Science, 2010, 168-181 Attacking Animated CAPTCHAs via Character Extraction. Lecture Notes in Computer Science, 2012, 98-13. A generalised bound for the Wiener attack on RSA. Journal of Information Security and Applications,	0.9	33333

213	How to Construct Identity-Based Signatures without the Key Escrow Problem. <i>Lecture Notes in Computer Science</i> , 2010 , 286-301	0.9	3
212	The Construction of Ambiguous Optimistic Fair Exchange from Designated Confirmer Signature without Random Oracles. <i>Lecture Notes in Computer Science</i> , 2012 , 120-137	0.9	3
211	Leakage-resilient group signature: Definitions and constructions. <i>Information Sciences</i> , 2020 , 509, 119-1	13/27	3
210	Attribute-based proxy re-signature from standard lattices and its applications. <i>Computer Standards and Interfaces</i> , 2021 , 75, 103499	3.5	3
209	P2DPI: Practical and Privacy-Preserving Deep Packet Inspection 2021 ,		3
208	Lattice-based signcryption with equality test in standard model. <i>Computer Standards and Interfaces</i> , 2021 , 76, 103515	3.5	3
207	Edit Distance Based Encryption and Its Application. Lecture Notes in Computer Science, 2016, 103-119	0.9	3
206	A Blind Signature from Module Latices 2019 ,		3
205	Threshold privacy-preserving cloud auditing with multiple uploaders. <i>International Journal of Information Security</i> , 2019 , 18, 321-331	2.8	3
204	Efficient Server-Aided Secure Two-Party Computation in Heterogeneous Mobile Cloud Computing. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2021 , 1-1	3.9	3
203	Utilizing QR codes to verify the visual fidelity of image datasets for machine learning. <i>Journal of Network and Computer Applications</i> , 2021 , 173, 102834	7.9	3
202	Sanitizable Access Control System for Secure Cloud Storage Against Malicious Data Publishers. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2021 , 1-1	3.9	3
201	A Wiener-type attack on an RSA-like cryptosystem constructed from cubic Pell equations. <i>Theoretical Computer Science</i> , 2021 , 885, 125-130	1.1	3
200	Efficient Signcryption Without Random Oracles. Lecture Notes in Computer Science, 2006, 449-458	0.9	3
199	A fast and flexible attribute-based searchable encryption scheme supporting multi-search mechanism in cloud computing. <i>Computer Standards and Interfaces</i> , 2022 , 82, 103635	3.5	3
198	Efficient dynamic threshold identity-based encryption with constant-size ciphertext. <i>Theoretical Computer Science</i> , 2016 , 609, 49-59	1.1	2
197	. IEEE Access, 2019 , 7, 25936-25947	3.5	2
196	Optimally Efficient Secure Scalar Product With Applications in Cloud Computing. <i>IEEE Access</i> , 2019 , 7, 42798-42815	3.5	2

195	Anonymous Yoking-Group Proofs 2015 ,		2
194	Optimistic fair exchange in the enhanced chosen-key model. <i>Theoretical Computer Science</i> , 2015 , 562, 57-74	1.1	2
193	Multi-authority security framework for scalable EHR systems. <i>International Journal of Medical Engineering and Informatics</i> , 2016 , 8, 390	0.5	2
192	Ciphertext-Policy Attribute Based Encryption Supporting Access Policy Update. <i>Lecture Notes in Computer Science</i> , 2016 , 39-60	0.9	2
191	Faulty Instantiations of Threshold Ring Signature from Threshold Proof-of-Knowledge Protocol. <i>Computer Journal</i> , 2016 , 59, 945-954	1.3	2
190	Policy controlled system with anonymity. <i>Theoretical Computer Science</i> , 2018 , 745, 87-113	1.1	2
189	Generalized public-key cryptography with tight security. <i>Information Sciences</i> , 2019 , 504, 561-577	7.7	2
188	Improving the Security of the DRS Scheme with Uniformly Chosen Random Noise. <i>Lecture Notes in Computer Science</i> , 2019 , 119-137	0.9	2
187	Accountable identity-based encryption with distributed private key generators. <i>Information Sciences</i> , 2019 , 505, 352-366	7.7	2
186	Dimensionality Reduction and Visualization of Network Intrusion Detection Data. <i>Lecture Notes in Computer Science</i> , 2019 , 441-455	0.9	2
185	Security pitfalls of an efficient threshold proxy signature scheme for mobile agents. <i>Information Processing Letters</i> , 2014 , 114, 5-8	0.8	2
184	Attribute-based optimistic fair exchange: How to restrict brokers with policies. <i>Theoretical Computer Science</i> , 2014 , 527, 83-96	1.1	2
183	Protecting peer-to-peer-based massively multiplayer online games. <i>International Journal of Computational Science and Engineering</i> , 2015 , 10, 293	0.4	2
182	A framework for privacy policy management in service aggregation 2010 ,		2
181	Self-certified ring signatures 2011 ,		2
180	Short Signatures with a Tighter Security Reduction Without Random Oracles. <i>Computer Journal</i> , 2011 , 54, 513-524	1.3	2
179	Securing personal health information access in mobile healthcare environment through short signature schemes. <i>International Journal of Mobile Communications</i> , 2007 , 5, 215	1.2	2
178	Efficient Partially Blind Signatures with Provable Security. <i>Lecture Notes in Computer Science</i> , 2007 , 10)96⊙1∮0	5 2

(2021-2000)

177	Key Management for Secure Multicast with Dynamic Controller. <i>Lecture Notes in Computer Science</i> , 2000 , 178-190	0.9	2
176	Efficient Anonymous Multi-group Broadcast Encryption. Lecture Notes in Computer Science, 2020, 251-2	76 .9	2
175	Possibility and Impossibility Results for Receiver Selective Opening Secure PKE in the Multi-challenge Setting. <i>Lecture Notes in Computer Science</i> , 2020 , 191-220	0.9	2
174	Puncturable Identity-Based Encryption from Lattices. Lecture Notes in Computer Science, 2021, 571-589	0.9	2
173	Threshold Fail-Stop Signature Schemes Based on Discrete Logarithm and Factorization. <i>Lecture Notes in Computer Science</i> , 2000 , 292-307	0.9	2
172	A General Construction for Fail-Stop Signature using Authentication Codes 2001 , 343-356		2
171	Efficient Unique Ring Signature for Blockchain Privacy Protection. <i>Lecture Notes in Computer Science</i> , 2021 , 391-407	0.9	2
170	A New Improved AES S-box with Enhanced Properties. Lecture Notes in Computer Science, 2020, 125-141	0.9	2
169	Secure Cloud Auditing with Efficient Ownership Transfer. Lecture Notes in Computer Science, 2020, 611-	63.19	2
168	An Adversary Aware and Intrusion Detection Aware Attack Model Ranking Scheme. <i>Lecture Notes in Computer Science</i> , 2007 , 65-86	0.9	2
167	Towards a Cryptographic Treatment of Publish/Subscribe Systems. <i>Lecture Notes in Computer Science</i> , 2010 , 201-220	0.9	2
166	Lattice Reduction for Modular Knapsack. Lecture Notes in Computer Science, 2013, 275-286	0.9	2
165	Fairness in Concurrent Signatures Revisited. Lecture Notes in Computer Science, 2013, 318-329	0.9	2
164	Fail-Stop Threshold Signature Schemes Based on Elliptic Curves. <i>Lecture Notes in Computer Science</i> , 1999 , 103-116	0.9	2
163	Recursive Lattice Reduction. Lecture Notes in Computer Science, 2010, 329-344	0.9	2
162	Al-driven data security and privacy. Journal of Network and Computer Applications, 2020, 172, 102842	7.9	2
161	An Anonymous Authentication System for Pay-As-You-Go Cloud Computing. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2020 , 1-1	3.9	2
160	New proofs of ownership for efficient data deduplication in the adversarial conspiracy model. <i>International Journal of Intelligent Systems</i> , 2021 , 36, 2753-2766	8.4	2

159	One-Round Strong Oblivious Signature-Based Envelope. Lecture Notes in Computer Science, 2016, 3-20	0.9	2
158	A semantic web vision for an intelligent community transport service brokering system 2016 ,		2
157	Ciphertext-policy attribute-based proxy re-encryption via constrained PRFs. <i>Science China Information Sciences</i> , 2021 , 64, 1	3.4	2
156	Lightweight Public Key Encryption With Equality Test Supporting Partial Authorization in Cloud Storage. <i>Computer Journal</i> , 2021 , 64, 1226-1238	1.3	2
155	A Secure and Authenticated Mobile Payment Protocol Against Off-site Attack Strategy. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2021 , 1-1	3.9	2
154	Group Encryption: Full Dynamicity, Message Filtering and Code-Based Instantiation. <i>Lecture Notes in Computer Science</i> , 2021 , 678-708	0.9	2
153	Private Set Intersection With Authorization Over Outsourced Encrypted Datasets. <i>IEEE Transactions on Information Forensics and Security</i> , 2021 , 16, 4050-4062	8	2
152	A 3D Approach for the Visualization of Network Intrusion Detection Data 2018,		2
151	Verifiable data streaming with efficient update for intelligent automation systems. <i>International Journal of Intelligent Systems</i> ,	8.4	2
150	Optimal Verifiable Data Streaming Protocol with Data Auditing. <i>Lecture Notes in Computer Science</i> , 2021 , 296-312	0.9	2
149	Securely Reinforcing Synchronization for Embedded Online Contests. <i>Transactions on Embedded Computing Systems</i> , 2017 , 16, 1-21	1.8	1
148	Revisiting Security Against the Arbitrator in Optimistic Fair Exchange. <i>Computer Journal</i> , 2015 , 58, 2665	- 2.6 76	1
147	Privacy-preserving encryption scheme using DNA parentage test. <i>Theoretical Computer Science</i> , 2015 , 580, 1-13	1.1	1
146	Secure Delegation of Signing Power from Factorization. <i>Computer Journal</i> , 2015 , 58, 867-877	1.3	1
145	On the General Construction of Tightly Secure Identity-Based Signature Schemes. <i>Computer Journal</i> , 2020 , 63, 1835-1848	1.3	1
144	Message-Locked Searchable Encryption: A New Versatile Tool for Secure Cloud Storage. <i>IEEE Transactions on Services Computing</i> , 2020 , 1-1	4.8	1
143	Functional encryption for computational hiding in prime order groups via pair encodings. <i>Designs, Codes, and Cryptography</i> , 2018 , 86, 97-120	1.2	1
142	Criteria-Based Encryption. <i>Computer Journal</i> , 2018 , 61, 512-525	1.3	1

141	Anonymous Announcement System (AAS) for Electric Vehicle in VANETs. Computer Journal, 2016,	1.3	1
140	Leakage-Resilient Dual-Form Signatures. <i>Computer Journal</i> , 2018 , 61, 1216-1227	1.3	1
139	The Wiener Attack on RSA Revisited: A Quest for the Exact Bound. <i>Lecture Notes in Computer Science</i> , 2019 , 381-398	0.9	1
138	Collusion-Resistance in Optimistic Fair Exchange. <i>IEEE Transactions on Information Forensics and Security</i> , 2014 , 9, 1227-1239	8	1
137	Covert QR Codes: How to Hide in the Crowd. <i>Lecture Notes in Computer Science</i> , 2017 , 678-693	0.9	1
136	How to protect privacy in Optimistic Fair Exchange of digital signatures. <i>Information Sciences</i> , 2015 , 325, 300-315	7.7	1
135	Revisiting Optimistic Fair Exchange Based on Ring Signatures. <i>IEEE Transactions on Information Forensics and Security</i> , 2014 , 9, 1883-1892	8	1
134	New constructions of OSBE schemes and their applications in oblivious access control. <i>International Journal of Information Security</i> , 2012 , 11, 389-401	2.8	1
133	Privacy-Enhanced Keyword Search in Clouds 2013 ,		1
132	Identity-Based Mediated RSA Revisited 2013 ,		1
132	Identity-Based Mediated RSA Revisited 2013 , Repeated Differential Properties of the AES-128 and AES-256 Key Schedules 2011 ,		1
		799	
131	Repeated Differential Properties of the AES-128 and AES-256 Key Schedules 2011 ,	799	1
131	Repeated Differential Properties of the AES-128 and AES-256 Key Schedules 2011 , Improving security of q-SDH based digital signatures. <i>Journal of Systems and Software</i> , 2011 , 84, 1783-1 Is the Notion of Divisible On-Line/Off-Line Signatures Stronger than On-Line/Off-Line Signatures?.		1
131 130 129	Repeated Differential Properties of the AES-128 and AES-256 Key Schedules 2011 , Improving security of q-SDH based digital signatures. <i>Journal of Systems and Software</i> , 2011 , 84, 1783-18. Is the Notion of Divisible On-Line/Off-Line Signatures Stronger than On-Line/Off-Line Signatures?. <i>Lecture Notes in Computer Science</i> , 2009 , 129-139. Chosen-ciphertext lattice-based public key encryption with equality test in standard model.	0.9	1 1
131 130 129 128	Repeated Differential Properties of the AES-128 and AES-256 Key Schedules 2011 , Improving security of q-SDH based digital signatures. <i>Journal of Systems and Software</i> , 2011 , 84, 1783-18. Is the Notion of Divisible On-Line/Off-Line Signatures Stronger than On-Line/Off-Line Signatures?. <i>Lecture Notes in Computer Science</i> , 2009 , 129-139. Chosen-ciphertext lattice-based public key encryption with equality test in standard model. <i>Theoretical Computer Science</i> , 2022 , 905, 31-53.	0.9	1 1 1
131 130 129 128	Repeated Differential Properties of the AES-128 and AES-256 Key Schedules 2011, Improving security of q-SDH based digital signatures. Journal of Systems and Software, 2011, 84, 1783-1 Is the Notion of Divisible On-Line/Off-Line Signatures Stronger than On-Line/Off-Line Signatures?. Lecture Notes in Computer Science, 2009, 129-139 Chosen-ciphertext lattice-based public key encryption with equality test in standard model. Theoretical Computer Science, 2022, 905, 31-53 QR Code Watermarking for Digital Images. Lecture Notes in Computer Science, 2020, 25-37 Trapdoor Delegation and HIBE from Middle-Product LWE in Standard Model. Lecture Notes in	0.9	1 1 1 1 1

123	A Five-Round Algebraic Property of the Advanced Encryption Standard. <i>Lecture Notes in Computer Science</i> , 2008 , 316-330	0.9	1
122	Targeted Universal Adversarial Perturbations for Automatic Speech Recognition. <i>Lecture Notes in Computer Science</i> , 2021 , 358-373	0.9	1
121	Cryptanalysis of RSA Variants with Primes Sharing Most Significant Bits. <i>Lecture Notes in Computer Science</i> , 2021 , 42-53	0.9	1
120	Deniable Partial Proxy Signatures. <i>Lecture Notes in Computer Science</i> , 2004 , 182-194	0.9	1
119	On Securing RTP-Based Streaming Content with Firewalls. Lecture Notes in Computer Science, 2005, 304	-319	1
118	Separable Identity-Based Deniable Authentication: Cryptographic Primitive for Fighting Phishing. <i>Lecture Notes in Computer Science</i> , 2006 , 68-80	0.9	1
117	Convertible Undeniable Proxy Signatures: Security Models and Efficient Construction. <i>Lecture Notes in Computer Science</i> , 2007 , 16-29	0.9	1
116	Using Freivalds Algorithm to Accelerate Lattice-Based Signature Verifications. <i>Lecture Notes in Computer Science</i> , 2019 , 401-412	0.9	1
115	Ciphertext-Delegatable CP-ABE for a Dynamic Credential: A Modular Approach. <i>Lecture Notes in Computer Science</i> , 2019 , 3-20	0.9	1
114	Provably Secure Group Authentication in the Asynchronous Communication Model. <i>Lecture Notes in Computer Science</i> , 2020 , 324-340	0.9	1
113	New Construction of Group Secret Handshakes Based on Pairings. <i>Lecture Notes in Computer Science</i> , 2007 , 16-30	0.9	1
112	How to Balance Privacy with Authenticity. Lecture Notes in Computer Science, 2009, 184-201	0.9	1
111	Efficient Online/Offline Signatures with Computational Leakage Resilience in Online Phase. <i>Lecture Notes in Computer Science</i> , 2011 , 455-470	0.9	1
110	Enhanced STE3D-CAP: A Novel 3D CAPTCHA Family. Lecture Notes in Computer Science, 2012, 170-181	0.9	1
109	Threshold-Oriented Optimistic Fair Exchange. Lecture Notes in Computer Science, 2013, 424-438	0.9	1
108	Iterated Random Oracle: A Universal Approach for Finding Loss in Security Reduction. <i>Lecture Notes in Computer Science</i> , 2016 , 745-776	0.9	1
107	Robust digital signature revisited. <i>Theoretical Computer Science</i> , 2020 , 844, 87-96	1.1	1
106	Fair Multi-signature. <i>Lecture Notes in Computer Science</i> , 2015 , 244-256	0.9	1

(2021-2017)

105	Defeating Plausible Deniability of VeraCrypt Hidden Operating Systems. <i>Communications in Computer and Information Science</i> , 2017 , 3-13	0.3	1
104	Improved Threat Models for the Security of Encrypted and Deniable File Systems. <i>Lecture Notes in Electrical Engineering</i> , 2018 , 223-230	0.2	1
103	Escrowed Deniable Identification Schemes. <i>Communications in Computer and Information Science</i> , 2009 , 234-241	0.3	1
102	Privacy for Private Key in Signatures. Lecture Notes in Computer Science, 2009, 84-95	0.9	1
101	An Efficient Construction of Time-Selective Convertible Undeniable Signatures. <i>Lecture Notes in Computer Science</i> , 2011 , 355-371	0.9	1
100	Secure Exchange of Electronic Health Records 2011 , 1-22		1
99	Concurrent Signatures with Fully Negotiable Binding Control. <i>Lecture Notes in Computer Science</i> , 2011 , 170-187	0.9	1
98	Multi-Level Controlled Signature. Lecture Notes in Computer Science, 2012, 96-110	0.9	1
97	Adaptive Precision Floating Point LLL. Lecture Notes in Computer Science, 2013, 104-117	0.9	1
96	Attribute-Based Signature with Message Recovery. Lecture Notes in Computer Science, 2014, 433-447	0.9	1
95	An Efficient Post-quantum Identity-Based Signature. Chinese Journal of Electronics, 2021, 30, 238-248	0.9	1
94	Introduction to the Special Section on Artificial Intelligence Security: Adversarial Attack and Defense. <i>IEEE Transactions on Network Science and Engineering</i> , 2021 , 8, 905-907	4.9	1
93	Ciphertext-Policy Attribute-Based Encryption with Key-Delegation Abuse Resistance. <i>Lecture Notes in Computer Science</i> , 2016 , 477-494	0.9	1
92	Tightly Secure Public-Key Cryptographic Schemes from One-More Assumptions. <i>Journal of Computer Science and Technology</i> , 2019 , 34, 1366-1379	1.7	1
91	Identity-based revocation system: Enhanced security model and scalable bounded IBRS construction with short parameters. <i>Information Sciences</i> , 2019 , 472, 35-52	7.7	1
90	Beating Random Test Case Prioritization. <i>IEEE Transactions on Reliability</i> , 2021 , 70, 654-675	4.6	1
89	Identity-Based Linkable Ring Signatures From Lattices. <i>IEEE Access</i> , 2021 , 9, 84739-84755	3.5	1
88	Bestie: Very Practical Searchable Encryption with Forward and Backward Security. <i>Lecture Notes in Computer Science</i> , 2021 , 3-23	0.9	1

87	. IEEE Access, 2021 , 9, 70616-70627	3.5	1
86	Lattice-Based HRA-secure Attribute-Based Proxy Re-Encryption in Standard Model. <i>Lecture Notes in Computer Science</i> , 2021 , 169-191	0.9	1
85	Black-Box Audio Adversarial Example Generation Using Variational Autoencoder. <i>Lecture Notes in Computer Science</i> , 2021 , 142-160	0.9	1
84	Blockchain based Multi-Authority Fine-Grained Access Control System with Flexible Revocation. <i>IEEE Transactions on Services Computing</i> , 2021 , 1-1	4.8	1
83	PPFilter: Provider Privacy-aware Encrypted Filtering System. <i>IEEE Transactions on Services Computing</i> , 2018 , 1-1	4.8	1
82	Data Access Control in Cloud Computing: Flexible and Receiver Extendable. <i>IEEE Transactions on Services Computing</i> , 2021 , 1-1	4.8	1
81	FH-CFI: Fine-grained hardware-assisted control flow integrity for ARM-based IoT devices. <i>Computers and Security</i> , 2022 , 116, 102666	4.9	1
80	Attribute-based Hierarchical Access Control with Extendable Policy. <i>IEEE Transactions on Information Forensics and Security</i> , 2022 , 1-1	8	1
79	Solutions to the anti-piracy problem in oblivious transfer. <i>Journal of Computer and System Sciences</i> , 2016 , 82, 466-476	1	0
78	A System Model for Personalized Medication Management (MyMediMan) The Consumers Point of View. <i>Information (Switzerland)</i> , 2018 , 9, 69	2.6	O
77	Location Based Encryption. Lecture Notes in Computer Science, 2019, 21-38	0.9	О
76	Secure RFID Ownership Transfer Protocols. <i>Lecture Notes in Computer Science</i> , 2013 , 189-203	0.9	О
75	Chosen-Ciphertext Secure Homomorphic Proxy Re-Encryption. <i>IEEE Transactions on Cloud Computing</i> , 2020 , 1-1	3.3	О
74	Hierarchical Identity-Based Signature in Polynomial Rings. Computer Journal, 2020 , 63, 1490-1499	1.3	O
73	Wildcarded identity-based encryption from lattices. <i>Theoretical Computer Science</i> , 2022 , 902, 41-53	1.1	Ο
72	Transport Layer Identification of Skype Traffic. Lecture Notes in Computer Science, 2008, 465-481	0.9	O
71	Improved Cryptanalysis of the KMOV Elliptic Curve Cryptosystem. <i>Lecture Notes in Computer Science</i> , 2019 , 206-221	0.9	O
<i>7</i> 0	Short Principal Ideal Problem in multicubic fields. <i>Journal of Mathematical Cryptology</i> , 2020 , 14, 359-39	20.6	O

69	Functional signatures: new definition and constructions. <i>Science China Information Sciences</i> , 2021 , 64, 1	3.4	O
68	Electronic Cash with Anonymous User Suspension. Lecture Notes in Computer Science, 2011 , 172-188	0.9	О
67	Generic Mediated Encryption. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2013 , 154-168	0.2	O
66	Black-Box Accountable Authority Identity-Based Revocation System. Computer Journal, 2020, 63, 525-	53 <u>Б</u> .3	O
65	Generic construction for tightly-secure signatures from discrete log. <i>Theoretical Computer Science</i> , 2021 , 888, 13-21	1.1	О
64	ROSE: Robust Searchable Encryption With Forward and Backward Security. <i>IEEE Transactions on Information Forensics and Security</i> , 2022 , 17, 1115-1130	8	O
63	Functional Encryption for Pattern Matching with a Hidden String. Cryptography, 2022, 6, 1	1.9	O
62	Practical Post-Quantum Signature Schemes from Isomorphism Problems of Trilinear Forms. <i>Lecture Notes in Computer Science</i> , 2022 , 582-612	0.9	O
61	Generalized closest substring encryption. <i>Designs, Codes, and Cryptography</i> , 2016 , 80, 103-124	1.2	
60	Cooperative Learning in Information Security Education: Teaching Secret Sharing Concepts. <i>Lecture Notes in Computer Science</i> , 2017 , 65-72	0.9	
59	A New Encoding Framework for Predicate Encryption with Non-linear Structures in Prime Order Groups. <i>Lecture Notes in Computer Science</i> , 2019 , 406-425	0.9	
58	Security, Privacy, and Trust for Cyberphysical-Social Systems. <i>Security and Communication Networks</i> , 2019 , 2019, 1-2	1.9	
57	Collusion-resistant convertible ring signature schemes. Science China Information Sciences, 2015, 58, 1-	·16 _{3.4}	
56	A New Approach to Keep the Privacy Information of the Signer in a Digital Signature Scheme. <i>Information (Switzerland)</i> , 2020 , 11, 260	2.6	
55	A Noise Study of the PSW Signature Family: Patching DRS with Uniform Distribution [] <i>Information</i> (Switzerland), 2020 , 11, 133	2.6	
54	The code for securing web applications. <i>Journal of Information and Optimization Sciences</i> , 2019 , 40, 90	5-9:1:7	
53	Two-Party (Blind) Ring Signatures and Their Applications. Lecture Notes in Computer Science, 2014 , 403	3-411.79	
52	Dirichlet product for boolean functions. <i>Journal of Applied Mathematics and Computing</i> , 2017 , 55, 293-	312 8	

51	Achieving fairness by sequential equilibrium in rational two-party computation under incomplete information. <i>Security and Communication Networks</i> , 2015 , 8, 3690-3700	1.9
50	Privacy preserving protocol for service aggregation in cloud computing. <i>Software - Practice and Experience</i> , 2012 , 42, 467-483	2.5
49	Efficient and secure stored-value cards with leakage resilience. <i>Computers and Electrical Engineering</i> , 2012 , 38, 370-380	4.3
48	Efficient lattice-based signature scheme. International Journal of Applied Cryptography, 2008, 1, 120	0.8
47	Breaking and Repairing Trapdoor-Free Group Signature Schemes from Asiacrypt 2004. <i>Journal of Computer Science and Technology</i> , 2007 , 22, 71-74	1.7
46	Short Group Signatures Without Random Oracles. <i>Journal of Computer Science and Technology</i> , 2007 , 22, 805-821	1.7
45	Attack on Han et al. ID-based confirmer (undeniable) signature at ACM-EC 13. <i>Applied Mathematics and Computation</i> , 2005 , 170, 1166-1169	2.7
44	Tight bound on NewHope failure probability. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2022 , 1-1	4.1
43	Trojan Attacks and Defense for Speech Recognition. <i>Communications in Computer and Information Science</i> , 2022 , 195-210	0.3
42	Forward-Secure Group Encryptions from Lattices. Lecture Notes in Computer Science, 2021, 610-629	0.9
41	Secure Exchange of Electronic Health Records1403-1424	
40	Cryptanalysis of BGW Broadcast Encryption Schemes for DVD Content Protection. <i>Lecture Notes in Computer Science</i> , 2007 , 32-41	0.9
39	Lattice-Based Group Encryption with Full Dynamicity and Message Filtering Policy. <i>Lecture Notes in Computer Science</i> , 2021 , 156-186	0.9
38	Pattern Matching over Encrypted Data with a Short Ciphertext. <i>Lecture Notes in Computer Science</i> , 2021 , 132-143	0.9
37	Secure Computation of Shared Secrets and Its Applications. <i>Lecture Notes in Computer Science</i> , 2021 , 119-131	0.9
36	On Classifying Conference Key Distribution Protocols. <i>Lecture Notes in Computer Science</i> , 2001 , 51-59	0.9
35	How to Construct Fail-Stop Confirmer Signature Schemes. Lecture Notes in Computer Science, 2001, 435	5- 4/191
34	Secure AODV Routing Protocol Using One-Time Signature. <i>Lecture Notes in Computer Science</i> , 2005 , 28	8-2.97

33	Zero-Knowledge Proof of Generalized Compact Knapsacks (or A Novel Identification/Signature Scheme). <i>Lecture Notes in Computer Science</i> , 2006 , 531-540	0.9
32	Privately Retrieve Data from Large Databases. Lecture Notes in Computer Science, 2006, 367-378	0.9
31	Efficient Authentication Schemes for AODV and DSR 2007 , 367-389	
30	Protecting the Visual Fidelity of Machine Learning Datasets Using QR Codes. <i>Lecture Notes in Computer Science</i> , 2019 , 320-335	0.9
29	Cloud-Based Data-Sharing Scheme Using Verifiable and CCA-Secure Re-encryption from Indistinguishability Obfuscation. <i>Lecture Notes in Computer Science</i> , 2019 , 240-259	0.9
28	Efficient Decentralized Random Commitment Key Generation for Mixnet Shuffle Proof. <i>Lecture Notes in Computer Science</i> , 2020 , 206-216	0.9
27	Concise Mercurial Subvector Commitments: Definitions and Constructions. <i>Lecture Notes in Computer Science</i> , 2021 , 353-371	0.9
26	Towards Visualizing and Detecting Audio Adversarial Examples for Automatic Speech Recognition. <i>Lecture Notes in Computer Science</i> , 2021 , 531-549	0.9
25	A Lattice-Based Certificateless Public Key Encryption with Equality Test in Standard Model. <i>Lecture Notes in Computer Science</i> , 2020 , 50-65	0.9
24	Securing Shared Systems. <i>Lecture Notes in Computer Science</i> , 2016 , 194-201	0.9
23	Ideals of Largest Weight in Constructions Based on Directed Graphs. <i>Bulletin of Mathematical Sciences and Applications</i> ,15, 8-16	
22	Mergeable and Revocable Identity-Based Encryption. <i>Lecture Notes in Computer Science</i> , 2017 , 147-167	0.9
21	Security Vulnerability of ID-Based Key Sharing Schemes. <i>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</i> , 2009 , E92-A, 2641-2643	0.4
20	Differential Fault Analysis of LEX. Lecture Notes in Computer Science, 2010, 55-72	0.9
19	On Capabilities of Hash Domain Extenders to Preserve Enhanced Security Properties. <i>Lecture Notes in Computer Science</i> , 2012 , 288-299	0.9
18	A Pre-computable Signature Scheme with Efficient Verification for RFID. <i>Lecture Notes in Computer Science</i> , 2012 , 1-16	0.9
17	Efficient Self-certified Signatures with Batch Verification. Lecture Notes in Computer Science, 2012, 179-	19.4
16	Towards Formalizing a Reputation System for Cheating Detection in Peer-to-Peer-Based Massively Multiplayer Online Games. <i>Lecture Notes in Computer Science</i> , 2012 , 291-304	0.9

Secure Exchange of Electronic Health Records **2013**, 1059-1079

14	Identity-Based Multisignature with Message Recovery. <i>Lecture Notes in Computer Science</i> , 2013 , 91-10	4 0.9
13	On delegatability of MDVS schemes. Journal of Computer Virology and Hacking Techniques,1	3
12	Enhancing Goldreich, Goldwasser and Halevill scheme with intersecting lattices. <i>Journal of Mathematical Cryptology</i> , 2019 , 13, 169-196	0.6
11	DABKE: Secure deniable attribute-based key exchange framework. <i>Journal of Computer Security</i> , 2019 , 27, 259-275	0.8
10	Concise ID-based mercurial functional commitments and applications to zero-knowledge sets. <i>International Journal of Information Security</i> , 2020 , 19, 453-464	2.8
9	. IEEE Transactions on Services Computing, 2021 , 14, 683-694	4.8
8	SyLPEnIoT: Symmetric Lightweight Predicate Encryption for Data Privacy Applications in IoT Environments. <i>Lecture Notes in Computer Science</i> , 2021 , 106-126	0.9
7	Visual Analysis of Adversarial Examples in Machine Learning 2021 , 85-98	
6	Mixed-protocol multi-party computation framework towards complex computation tasks with malicious security. <i>Computer Standards and Interfaces</i> , 2022 , 80, 103570	3.5
5	Efficient maliciously secure two-party mixed-protocol framework for data-driven computation tasks. <i>Computer Standards and Interfaces</i> , 2022 , 80, 103571	3.5
4	Password Protected Secret Sharing from Lattices. <i>Lecture Notes in Computer Science</i> , 2021 , 442-459	0.9
3	Secure and Efficient Communication in VANETs Using Level-Based Access Control. <i>Wireless Communications and Mobile Computing</i> , 2022 , 2022, 1-19	1.9
2	Securing Mobile Data Computing in Healthcare1930-1939	

Optimal Tightness for Chain-Based Unique Signatures. Lecture Notes in Computer Science, 2022, 553-5830.9