Fengwang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/31435/publications.pdf Version: 2024-02-01

FENCIMANIC

#	Article	IF	CITATIONS
1	Soybean protein-derived N, O co-doped porous carbon sheets for supercapacitor applications. New Journal of Chemistry, 2022, 46, 10844-10853.	2.8	37
2	Biomass carbon materials with porous array structures derived from soybean dregs for effective electromagnetic wave absorption. Diamond and Related Materials, 2022, 126, 109054.	3.9	17
3	Woodâ€Derived Highâ€Massâ€Loading MnO ₂ Composite Carbon Electrode Enabling High Energy Density and Highâ€Rate Supercapacitor. Small, 2022, 18, e2201307.	10.0	52
4	Nanocellulose and its derived composite electrodes toward supercapacitors: Fabrication, properties, and challenges. Journal of Bioresources and Bioproducts, 2022, 7, 245-269.	20.5	120
5	Design of wood-derived anisotropic structural carbon electrode for high-performance supercapacitor. Wood Science and Technology, 2022, 56, 1191-1203.	3.2	27
6	Facile Electrodeposition of NiCo2O4 Nanosheets on Porous Carbonized Wood for Wood-Derived Asymmetric Supercapacitors. Polymers, 2022, 14, 2521.	4.5	49
7	All-cellulose-based high-rate performance solid-state supercapacitor enabled by nitrogen doping and porosity tuning. Diamond and Related Materials, 2022, 128, 109238.	3.9	21
8	Camellia Pollenâ€Derived Carbon with Controllable N Content for Highâ€Performance Supercapacitors by Ammonium Chloride Activation and Dual Nâ€Doping. ChemNanoMat, 2021, 7, 34-43.	2.8	28
9	Recent progress in carbon-based materials for supercapacitor electrodes: a review. Journal of Materials Science, 2021, 56, 173-200.	3.7	474
10	Water molecule-induced hydrogen bonding between cellulose nanofibers toward highly strong and tough materials from wood aerogel. Chinese Chemical Letters, 2021, 32, 3105-3108.	9.0	33
11	Review on porous carbon materials engineered by ZnO templates: Design, synthesis and capacitance performance. Materials and Design, 2021, 201, 109518.	7.0	85
12	3D printing hydrogels for actuators: A review. Chinese Chemical Letters, 2021, 32, 2923-2932.	9.0	59
13	Electrode thickness design toward bulk energy storage devices with high areal/volumetric energy density. Applied Energy, 2021, 289, 116734.	10.1	57
14	Pyrolysis of Enzymolysisâ€īreated Wood: Hierarchically Assembled Porous Carbon Electrode for Advanced Energy Storage Devices. Advanced Functional Materials, 2021, 31, 2101077.	14.9	109
15	Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors. Chemical Engineering Journal, 2021, 414, 128767.	12.7	114
16	Core effect on mechanical properties of one dimensional electrospun core-sheath composite fibers. Composites Communications, 2021, 25, 100773.	6.3	22
17	Woodâ€Derived, Conductivity and Hierarchical Pore Integrated Thick Electrode Enabling High Areal/Volumetric Energy Density for Hybrid Capacitors. Small, 2021, 17, e2102532.	10.0	49
18	ZnCl ₂ regulated flax-based porous carbon fibers for supercapacitors with good cycling stability. New Journal of Chemistry, 2021, 45, 22602-22609.	2.8	48

Fengwang

#	Article	IF	CITATIONS
19	Recent advances in carbon substrate supported nonprecious nanoarrays for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 25773-25795.	10.3	71
20	High adsorption activated calcium silicate enabling high-capacity adsorption for sulfur dioxide. New Journal of Chemistry, 2020, 44, 11879-11886.	2.8	15
21	A flame-retardant and transparent wood/polyimide composite with excellent mechanical strength. Composites Communications, 2020, 20, 100355.	6.3	74
22	Fatsia Japonica-Derived Hierarchical Porous Carbon for Supercapacitors With High Energy Density and Long Cycle Life. Frontiers in Chemistry, 2020, 8, 89.	3.6	22
23	N-doped honeycomb-like porous carbon towards high-performance supercapacitor. Chinese Chemical Letters, 2020, 31, 1986-1990.	9.0	116