Jesus M Porres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/314317/publications.pdf

Version: 2024-02-01

75	1,925	279798	²⁷⁶⁸⁷⁵
papers	citations	h-index	g-index
777			0100
77 all docs	77 docs citations	77 times ranked	2133 citing authors
un doco	does citations	cimes ranked	citing autiliors

#	Article	IF	CITATIONS
1	In vitro evidence of the antitumor capacity of <i>Solanaceae</i> and <i>Cucurbitaceae</i> in colon cancer: A systematic review. Critical Reviews in Food Science and Nutrition, 2022, 62, 6293-6314.	10.3	5
2	Carbohydrates digestibility and faecal microbiota composition in rats fed diets based on raw or fermented Vigna unguiculata seed meal as the only protein source. , 2022, 1 , 100022 .		3
3	In Vivo Nutritional Assessment of the Microalga Nannochloropsis gaditana and Evaluation of the Antioxidant and Antiproliferative Capacity of Its Functional Extracts. Marine Drugs, 2022, 20, 318.	4.6	8
4	Bioavailability and biotransformation of linolenic acid from basil seed oil as a novel source of omega-3 fatty acids tested on a rat experimental model. Food and Function, 2022, 13, 7614-7628.	4.6	3
5	Exploring Honeybee Abdominal Anatomy through Micro-CT and Novel Multi-Staining Approaches. Insects, 2022, 13, 556.	2.2	4
6	Caloric restriction, physical exercise, and CB1 receptor blockade as an efficient combined strategy for bodyweight control and cardiometabolic status improvement in male rats. Scientific Reports, 2021, 11, 4286.	3.3	5
7	Antitumor Effect of the Ethanolic Extract from Seeds of Euphorbia lathyris in Colorectal Cancer. Nutrients, 2021, 13, 566.	4.1	15
8	Anemonia sulcata and Its Symbiont Symbiodinium as a Source of Anti-Tumor and Anti-Oxidant Compounds for Colon Cancer Therapy: A Preliminary In Vitro Study. Biology, 2021, 10, 134.	2.8	5
9	Antioxidant and antiproliferative potential of ethanolic extracts from Moringa oleifera, Tropaeolum tuberosum and Annona cherimola in colorrectal cancer cells. Biomedicine and Pharmacotherapy, 2021, 143, 112248.	5.6	11
10	A combined healthy strategy for successful weight loss, weight maintenance and improvement of hepatic lipid metabolism. Journal of Nutritional Biochemistry, 2020, 85, 108456.	4.2	7
11	Germination Improves the Polyphenolic Profile and Functional Value of Mung Bean (Vigna radiata L.). Antioxidants, 2020, 9, 746.	5.1	17
12	Natural Fermentation of Cowpea (Vigna unguiculata) Flour Improves the Nutritive Utilization of Indispensable Amino Acids and Phosphorus by Growing Rats. Nutrients, 2020, 12, 2186.	4.1	11
13	The combined treatment with lentil protein hydrolysate and a mixed training protocol is an efficient lifestyle intervention to manage cardiovascular and renal alterations in obese Zucker rats. European Journal of Nutrition, 2020, 59, 3473-3490.	3.9	6
14	Aerobic interval exercise improves renal functionality and affects mineral metabolism in obese Zucker rats. American Journal of Physiology - Renal Physiology, 2019, 316, F90-F100.	2.7	9
15	Effects of a combined intervention with a lentil protein hydrolysate and a mixed training protocol on the lipid metabolism and hepatic markers of NAFLD in Zucker rats. Food and Function, 2018, 9, 830-850.	4.6	21
16	Fecal fermentation products of common bean-derived fiber inhibit C/EBPα and PPARγ expression and lipid accumulation but stimulate PPARÎʿ and UCP2 expression in the adipogenesis of 3T3-L1 cells. Journal of Nutritional Biochemistry, 2018, 60, 9-15.	4.2	10
17	Effects of Hypertrophy Exercise in Bone Turnover Markers and Structure in Growing Male Rats. International Journal of Sports Medicine, 2017, 38, 418-425.	1.7	0
18	Efectos del ejercicio aeróbico interválico, combinado con entrenamiento de fuerza y de la restricción calórica, sobre la composición corporal de ratas obesas. Revista Andaluza De Medicina Del Deporte, 2017, 10, 3-8.	0.1	0

#	Article	IF	Citations
19	The Combined Intervention with Germinated Vigna radiata and Aerobic Interval Training Protocol Is an Effective Strategy for the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD) and Other Alterations Related to the Metabolic Syndrome in Zucker Rats. Nutrients, 2017, 9, 774.	4.1	14
20	Effects of a moderately high-protein diet and interval aerobic training combined with strength-endurance exercise on markers of bone metabolism, microarchitecture and turnover in obese Zucker rats. Bone, 2016, 92, 116-123.	2.9	2
21	Medicago sativa L., a functional food to relieve hypertension and metabolic disorders in a spontaneously hypertensive rat model. Journal of Functional Foods, 2016, 26, 470-484.	3.4	16
22	Beneficial effects of legumes on parameters of the metabolic syndrome: a systematic review of trials in animal models. British Journal of Nutrition, 2016, 116, 402-424.	2.3	22
23	Effects of interval aerobic training combined with strength exercise on body composition, glycaemic and lipid profile and aerobic capacity of obese rats. Journal of Sports Sciences, 2016, 34, 1452-1460.	2.0	17
24	Stanozolol Decreases Bone Turnover Markers, Increases Mineralization, and Alters Femoral Geometry in Male Rats. Calcified Tissue International, 2016, 98, 609-618.	3.1	1
25	High-intensity Exercise Modifies the Effects of Stanozolol on Brain Oxidative Stress in Rats. International Journal of Sports Medicine, 2015, 36, 984-991.	1.7	13
26	Aerobic interval exercise improves parameters of nonalcoholic fatty liver disease (NAFLD) and other alterations of metabolic syndrome in obese Zucker rats. Applied Physiology, Nutrition and Metabolism, 2015, 40, 1242-1252.	1.9	28
27	Co-inoculation of Halomonas maura and Ensifer meliloti to improve alfalfa yield in saline soils. Applied Soil Ecology, 2015, 87, 81-86.	4.3	28
28	Improvement of the antioxidant and hypolipidaemic effects of cowpea flours (<i>Vigna) Tj ETQq0 0 0 rgBT /Ove</i>	rlock 10 Ti 3.5	f 50 387 Td (ι 54
	the Science of Food and Agriculture, 2015, 95, 1207-1216.		
29	Efectos de un protocolo de entrenamiento de alta intensidad sobre marcadores fisiológicos de estrés en ratas. [Physiological effects of the stress induced by a high-intensity exercise protocol in rats] RICYDE Revista Internacional De Ciencias Del Deporte, 2015, 11, 145-162.	0.2	O
30	Synthesis of [77Se]-methylselenocysteine when preparing sauerkraut in the presence of [77Se]-selenite. Metabolic transformation of [77Se]-methylselenocysteine in Wistar rats determined by LC–IDA–ICP–MS. Analytical and Bioanalytical Chemistry, 2014, 406, 7949-7958.	3.7	6
31	High-Intensity Exercise May Compromise Renal Morphology in Rats. International Journal of Sports Medicine, 2014, 35, 639-644.	1.7	5
32	Effects of the amount and source of dietary protein on bone status in rats. Food and Function, 2014, 5, 716.	4.6	4
33	Whey Versus Soy Protein Diets and Renal Status in Rats. Journal of Medicinal Food, 2014, 17, 1011-1016.	1.5	4
34	High-protein diet induces oxidative stress in rat brain: protective action of high-intensity exercise against lipid peroxidation. Nutricion Hospitalaria, 2014, 31, 866-74.	0.3	12
35	Novel effects of the cannabinoid inverse agonist AM 251 on parameters related to metabolic syndrome in obese Zucker rats. Metabolism: Clinical and Experimental, 2013, 62, 1641-1650.	3.4	17
36	Health promoting effects of Lupin (Lupinus albus var. multolupa) protein hydrolyzate and insoluble fiber in a diet-induced animal experimental model of hypercholesterolemia. Food Research International, 2013, 54, 1471-1481.	6.2	30

#	Article	IF	Citations
37	Ergogenic effects of quercetin supplementation in trained rats. Journal of the International Society of Sports Nutrition, 2013, 10, 3.	3.9	21
38	Selenium, Selenoproteins, and Age-Related Disorders. , 2013, , 227-239.		2
39	Legumes, Genome Maintenance, and Optimal Health. , 2013, , 321-334.		O
40	Effects of the dietary amount and source of protein, resistance training and anabolic-androgenic steroids on body weight and lipid profile of rats. Nutricion Hospitalaria, 2013, 28, 127-36.	0.3	14
41	High-protein diets and renal status in rats. Nutricion Hospitalaria, 2013, 28, 232-7.	0.3	28
42	Changes on metabolic parameters induced by acute cannabinoid administration (CBD, THC) in a rat experimental model of nutritional vitamin A deficiency. Nutricion Hospitalaria, 2013, 28, 857-67.	0.3	2
43	Effects of high-whey-protein intake and resistance training on renal, bone and metabolic parameters in rats. British Journal of Nutrition, 2011, 105, 836-845.	2.3	45
44	Spatial-temporal parameters of gait in women with fibromyalgia. Clinical Rheumatology, 2009, 28, 595-598.	2.2	45
45	Influence of intracerebroventricular or intraperitoneal administration of cannabinoid receptor agonist (WIN 55,212-2) and inverse agonist (AM 251) on the regulation of food intake and hypothalamic serotonin levels. British Journal of Nutrition, 2009, 101, 1569.	2.3	29
46	Effects of hydroalcoholic \hat{l} ±-galactoside extraction and phytase supplementation on the nutritive utilization of manganese, iron, zinc and potassium from lupin (Lupinus albus var. multolupa)-based diets in growing rats. Food Chemistry, 2008, 109, 554-563.	8.2	3
47	Phytase: Source, Structure and Application. , 2007, , 505-529.		56
48	Nitrogen Fractions and Mineral Content in Different Lupin Species (<i>Lupinus albus</i> , <i>Lupinus) Tj ETQq0 C</i>	0 0 rgBT /C 5.2	Overlock 10 Tf 11
	Journal of Agricultural and Food Chemistry, 2007, 55, 7445-7452.		
49	Effect of treatment with $\hat{l}\pm$ -galactosidase, tannase or a cell-wall-degrading enzyme complex on the nutritive utilisation of protein and carbohydrates from pea (Pisum sativum L.) flour. Journal of the Science of Food and Agriculture, 2007, 87, 1356-1363.	3.5	9
50	Improvement in food intake and nutritive utilization of protein from Lupinus albus var. multolupa protein isolates supplemented with ascorbic acid. Food Chemistry, 2007, 103, 944-951.	8.2	15
51	Improvement of iron availability from phytase-treated Pisum sativum, L. flour. Food Chemistry, 2007, 103, 389-395.	8.2	7
52	Effect of phytic acid degradation by soaking and exogenous phytase on the bioavailability of magnesium and zinc from Pisum sativum, L European Food Research and Technology, 2007, 226, 105-111.	3.3	4
53	Nutritional Value., 2007,, 47-93.		21
54	Nutritional evaluation of protein, phosphorus, calcium and magnesium bioavailability from lupin (Lupinus albus var. multolupa)-based diets in growing rats: effect of $\hat{l}\pm$ -galactoside oligosaccharide extraction and phytase supplementation. British Journal of Nutrition, 2006, 95, 1102-1111.	2.3	16

#	Article	IF	Citations
55	Evaluation of zinc and magnesium bioavailability from pea (Pisum sativum, L.) sprouts. Effect of illumination and different germination periods. International Journal of Food Science and Technology, 2006, 41, 618-626.	2.7	24
56	Shifting the pH Profile of Aspergillus niger PhyA Phytase To Match the Stomach pH Enhances Its Effectiveness as an Animal Feed Additive. Applied and Environmental Microbiology, 2006, 72, 4397-4403.	3.1	77
57	Effects of germination on the composition and nutritive value of proteins in , L. Food Chemistry, 2005, 93, 671-679.	8.2	49
58	Nutritional assessment of raw and germinated pea (Pisum sativum L.) protein and carbohydrate by in vitro and in vivo techniques. Nutrition, 2005, 21, 230-239.	2.4	63
59	Nutritional Potential of Raw and Free α-Galactosides Lupin (Lupinus albus Var. multolupa) Seed Flours. Effect of Phytase Treatment on Nitrogen and Mineral Dialyzability. Journal of Agricultural and Food Chemistry, 2005, 53, 3088-3094.	5.2	25
60	Bioavailability of phytic acid–phosphorus and magnesium from lentils (Lens culinaris m.) in growing rats: Influence of thermal treatment and vitamin-mineral supplementation. Nutrition, 2004, 20, 794-799.	2.4	13
61	Bioavailability of calcium and magnesium from faba beans(Vicia faba L varmajor), soaked in different pH solutions and cooked, in growing rats. Journal of the Science of Food and Agriculture, 2004, 84, 1514-1520.	3.5	8
62	Phytase enzymology, applications, and biotechnology. Biotechnology Letters, 2003, 25, 1787-1794.	2.2	183
63	Effect of Heat Treatment and Mineral and Vitamin Supplementation on the Nutritive Use of Protein and Calcium From Lentils (Lens culinaris M.) in Growing Rats. Nutrition, 2003, 19, 451-456.	2.4	16
64	Nutritional Evaluation of Pea (Pisum sativumL.) Protein Diets after Mild Hydrothermal Treatment and with and without Added Phytase. Journal of Agricultural and Food Chemistry, 2003, 51, 2415-2420.	5.2	37
65	Effect of Natural and Controlled Fermentation on Chemical Composition and Nutrient Dialyzability from Beans (Phaseolus vulgarisL.). Journal of Agricultural and Food Chemistry, 2003, 51, 5144-5149.	5.2	26
66	Site-directed mutagenesis of Aspergillus niger NRRL 3135 phytase at residue 300 to enhance catalysis at pH 4.0. Biochemical and Biophysical Research Communications, 2002, 297, 1016-1020.	2.1	59
67	Digestive utilisation of protein and amino acids from raw and heated lentils by growing rats. Journal of the Science of Food and Agriculture, 2002, 82, 1740-1747.	3.5	30
68	Functional expression of keratinase (kerA) gene from Bacillus licheniformis in Pichia pastoris. Biotechnology Letters, 2002, 24, 631-636.	2.2	29
69	Comparative impacts of glutathione peroxidase-1 gene knockout on oxidative stress induced by reactive oxygen and nitrogen species in mouse hepatocytes. Biochemical Journal, 2001, 359, 687.	3.7	16
70	Comparative impacts of glutathione peroxidase-1 gene knockout on oxidative stress induced by reactive oxygen and nitrogen species in mouse hepatocytes. Biochemical Journal, 2001, 359, 687-695.	3.7	26
71	Papel del ácido fÃŧico en las legumbres. Journal of Physiology and Biochemistry, 2000, 56, 283-294.	3.0	216
72	Knockout of cellular glutathione peroxidase gene renders mice susceptible to diquat-induced oxidative stress. Free Radical Biology and Medicine, 1999, 27, 605-611.	2.9	118

#	Article	IF	CITATIONS
73	Dietary Intrinsic Phytate Protects Colon from Lipid Peroxidation in Pigs with a Moderately High Dietary Iron Intake. Proceedings of the Society for Experimental Biology and Medicine, 1999, 221, 80-86.	1.8	53
74	Ca and P bioavailability of processed lentils as affected by dietary fiber and phytic acid content. Nutrition Research, 1999, 19, 49-64.	2.9	18
75	Different Sensitivity of RecombinantAspergillus nigerPhytase (r-PhyA) and Escherichia colipH 2.5 Acid Phosphatase (r-AppA) to Trypsin and Pepsinin Vitro. Archives of Biochemistry and Biophysics, 1999, 365, 262-267.	3.0	93